
Self-Organization of temporal network

Takaaki Aoki

Faculty of Education, Kagawa University
1-1 Saiwai-cho, Takamatsu, Kagawa 760–8521, Japan

Email: aoki@ed.kagawa-u.ac.jp

Abstract—We study a model of adaptive temporal net-
works that are regulated by human activity and vice versa.
Thereby we seek to develop a unifying understanding of the
mechanisms governing human social dynamics. We ana-
lyze the model using a master equation approach and show
that the temporal and structural heterogeneities seen in
real-world networks can emerge spontaneously from com-
pletely homogenous initial conditions. This theoretically
tractable model will promote further studies to understand
how our society is organized by the interplay between so-
cial relations and human activity.

1. Introduction

Human social behavior is a complex phenomenon that
depends both on single individuals and on the interactions
between them. In daily life, interactions between people
create contact patterns that can be mathematically repre-
sented by networks, i.e. a set of nodes, corresponding to the
people, connected by links, representing the contacts be-
tween the respective individuals [1]. In network terminol-
ogy, the number of contacts of a given person is called the
degree k of a node and thus the degree distribution pk is the
probability distribution that a randomly chosen node has
degree k. Real-life networks have a high level of hetero-
geneity in the number of contacts per node. The empirical
degree distributions are typically approximated by power-
law [2, 3]. Contact patterns however are not static and
more realistically nodes alternate between active and inac-
tive states [4]. Nodes that have many contacts for example
in one hour may be completely inactive in the following
hours [5]. Recent studies suggest that this temporal ac-
tivity, quantified by the inter-event intervals (IEIs), i.e. the
time between two subsequent node activations, is highly
heterogeneous and generates bursts of activity [6, 7, 4].

While several models have been proposed to explain the
heterogeneity in the degree distribution [8, 9, 10, 11], a few
studies have focused on modeling the burstiness of the tem-
poral activity. In particular, Barabási proposed a priority-
based model in which nodes prioritize tasks [6, 7]. Nodes
first execute the high-priority tasks, i.e. these tasks are ex-
ecuted within a short time, while low-priority tasks have to
wait longer times before leaving the queue. Every execu-
tion creates an activation of a node. Other models however
are based on inhomogeneous Poisson processes on each
node modulated by (daily and weekly) cycles of human

activity [12, 13]. Combined, these processes generate the
bursting or quiescent activities due to the changes of the
activation rates of each node.

The shortcoming of the previous models is that they
consider the network structure and node activity indepen-
dently, and thus miss the fact that the microdynamics regu-
lates the evolution of the network even if macroscopic net-
work quantities, such as the degree distribution, are con-
served [14, 5]. On the other hand, adaptive networks fill in
this gap and combine the dynamics on and of the network
in a single model [15, 16].

In this letter, we propose a model of temporal net-
works where the human activity and their connections are
adaptively regulated by past interactions, as illustrated in
Fig. 1(a). We analyze the master equation of the model
using generating functions and show that, under suitable
conditions, heterogeneous structural and temporal patterns
spontaneously emerge from completely homogeneous ini-
tial conditions.
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Figure 1: (a) Structural and temporal heterogeneities
among people are interdependent. (b) Illustration of the
interaction-regulated stochastic contact model. Within one
time step, (i) nodes become activate, (ii) make random con-
nections, (iii) exchange resources, and finally (iv) break
down the links.
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2. Model

The model consists in three steps: (i) activation of nodes,
(ii) formation of pairs, and (iii) exchange of resources
(Fig. 1(b)). We initially assign an internal state xi(t) for
node i. The “resource” given by xi(t) triggers the activ-
ity of node i with a probability proportional to xi(t), and
thus represents its willingness to contact other nodes in the
network. At each time step t, a number of nodes NA be-
comes active. Each active node at time t forms a directed
link to another node in the network. For each link, the tar-
get node is uniformly selected from all nodes in the net-
work with probability κ (contact to anyone in the network),
and selected among the active nodes with probability 1 − κ
(contact to another active person, who has something to
share). Therefore, links are generated only between the ac-
tive nodes if κ = 0 [17], and with any network node if κ = 1
[18]. We thus extend previous models by considering inter-
mediate situations by simply controlling the parameter κ.

The internal states are updated by transferring a fixed
amount of resource D via each pair of directed links.

xi(t + 1) − xi(t) = D

∑
j

ai j(t) −
∑

j

a ji(t)

 , (1)

where ai j(t) is adjacency matrix at time t, i.e. ai j(t) = 1
if there is a link between nodes i and j and 0 otherwise.
This resource exchange means that the willingness to con-
tact someone will decrease among the persons who made
a contact to others, and it will increase among the persons
who received the contacts. Finally, the links are broken and
the entire routine is repeated in the next time step. We as-
sume the initial state of all nodes to be completely identical
and set xi(0) = 1.

3. Results

To derive the master equation of the model, let us con-
sider the node density un(t) whose state xi(t) = nD. We
assume that the number of nodes N and the active nodes
NA, are large enough, and the total fraction of the active
nodes NA/N is fixed. The active fraction an of un(t) is
proportional to its resource amount nDun(t). Therefore,
anun(t) = NA

N
nDun(t)∑
n nDun(t) =

NA
N nDun(t), where the total re-

source
∑

n nDun(t) is preserved to 1. The active nodes are
randomly connected to all nodes by NAκ links. In other
words, all nodes have a chance of getting incoming links
with 1/N(≡ ρ1) in NAκ(≡ M1) trials. Moreover, the ac-
tive nodes have a chance of getting incoming links with
1/NA(≡ ρ2) in NA(1 − κ)(≡ M2) trials, while they have an
outgoing link. The resource is transferred by a unit of D
through the directed links. Using the Binomial probability
B(m, ρ,M) of m success with probability ρ in M trials, the

master equation is:

dun(t)
dt

= A(−1)an+1un+1(t)

−C1anun(t) −C2ānun(t)

+

NA∑
m=1

an−mun−m(t)A(m)

+

NAκ∑
m=1

ān−mun−m(t)B(m, ρ1,M1), (2)

where ān(= 1 − an) is the inactive fraction of un(t), A(m) =∑
m1+m2=m+1 B(m1, ρ1,M1)B(m2, ρ2,M2), and C1 = 1−A(0),

C2 =
∑NAκ

m=1 B(m1, ρ1,NAκ).
Using a generating function Q(t, x) =

∑
n un(t)xn, we fi-

nally we finally obtain the mean µx and the variance σ2
x of

the stationary resource distribution P(x) 1:

µx = 1, (3)

σ2
x =

D
2κ

[
1 + 2

(
1
D
− 1

)
κ +

(
1 − NA

N

)
κ2

]
+ 1 − 1

D
. (4)

We find that the variance σ2
x → ∞ as κ → 0, while the

mean µx is fixed.
By tuning the parameter κ, this model is able to repro-

duce different structural and temporal patterns (Fig. 2). If
κ = 0, the active individuals only contact those individ-
uals that are also active, a dynamics that eventually lead
to a closed group of a few nodes monopolizing the re-
source. Nodes outside this group however are left without
any resources. In this situation, the diameter of the aggre-
gated contact network (formed by all links collected during
Ts = 104 time steps) shrinks and the temporal patterns of
the nodes inside this group exhibit a Poisson-like dynam-
ics, i.e. exponential inter-event times (Fig. 2(b)). In con-
trast, for larger κ, the active individuals may increasingly
link to any uniformly chosen node. This situation leads to
a homogeneous distribution of resources, which generates
a Gaussian-like in-degree distribution (Fig. 2(e)) and an
exponential (single-node) IEI distribution (Fig. 2(f)), the
later a result of the quasi-homogenous Poisson process.

In the intermediate case, in which active individuals
mainly contact other active individuals and occasionally
link to those inactive, we observe the emergence of highly
heterogeneous structural (Fig. 2(c)) and temporal patterns
(Fig. 2(d)). The contact network has a power-law in-degree
distribution with an exponential cutoff, similar to the re-
source distribution (Fig. 2(c)).

4. Conclusion

In this paper, we proposed a model of contact networks
where the human dynamics are adaptively regulated by past

1See the reference [19] for details of the calculations and the related
results.
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Figure 2: The degree distribution P(k) and single-node IEIs
distribution Ps(∆t) for (a,b) κ = 0 (Ps(∆t) is plotted in semi-
log graph), (c,d) κ = 0.001 (both graphs are log-log), and
(e,f) κ = 0.1 (Ps(∆t) is semi-log), with NA = 1024, N = 215,
and D = 0.01.

interaction and exchange of resources between the individ-
uals in the network. We analyzed the master equation of
the model and found that structural and temporal hetero-
geneities, as observed in real-world temporal networks, can
spontaneously emerge without any ad-hoc assumption on
heterogeneity but by simply regulating the choice of con-
tacts of the noes. In the model, these two heterogeneities
are observed in an intermediate regime in which the active
individuals typically communicate with other active peo-
ple (rich-club) but occasionally connect to anyone in the
network.
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