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Abstract— The spatio-temporal contextual learning mem-
ory network model was proposed as a hippocampal mem-
ory model. This model has spatio-temporal learning rule
synapses and Hebbian learning rule synapses, and can em-
bed spatio-temporal information into the synaptic weight
space in the network as a memory. However, no method
has been proposed to evaluate embedded memory by us-
ing the output of the network. Therefore, we proposed a
method to confirm the embedding of memory based on the
output spike rate. In this study, we construct an extended
spatio-temporal contextual learning memory network using
two-variable spiking neurons. We evaluate memory state
from output spike rates proposing as an efficient measure
in a small-scale extended spatio-temporal contextual learn-
ing memory network.

1. Introduction

A hippocampal learning model was proposed [1], which
is expected to be applied to edge devices. Originally, this
model is for a continuous-time neural networks with spik-
ing neurons, but due to calculation time issues, a discrete-
time model has been used. To fully use the intrinsic per-
formance in continuous-time regime, we have proposed
an extended spatio-temporal contextual learning memory
network (eSTCLMN) model [2] using spiking neurons
with continuous-time. The model also takes mixed ana-
log/digital circuit implementations into account to solve
the calculation time problem. In the eSTCLMN model, a
leaky integrate-and-fire (LIF) neuron model [3] was em-
ployed, which is simple and suitable for circuit implemen-
tation. However, it can only reproduce simple periodic
spike trains.

The eSTCLMN model can embed the spatio-temporal
information into the synaptic weight space in the network
as a memory [4], but it is difficult to readout this memory on
the output space [5]. Therefore, we proposed a method to
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use the output spike rate of the neurons in the output layer
to evaluate the memory state embedded in the network [6].

In this study, we re-describe the eSTCLMN model em-
ploying a two-variable spiking neuron (TSN) [7], and ver-
ify its effectiveness through simple numerical experiments.
TSN can reproduce a variety of spiking characteristics and
has low power consumption. The TSN can generate chaotic
spikes as an alternative to random input spikes, and convert
spatio-temporal information into spike trains in the input
layer of the network. The TSN can also be used like the
LIF neuron in the output layer of the network.

Furthermore, we define an output spike rate (OSR), and
confirm that the spatio-temporal information is not only
memorized on the synaptic weight space in the network,
but also can be read from the output spike rates on the out-
put space using OSR.

2. Extended Spatio-Temporal Contextual Learning
Memory Network Model

2.1. Network Model

We use a small eSTCLMN as shown in Fig. 1 to perform
simple numerical experiments with TSNs. The eSTCLMN
in the figure has two TSNs and one TSN in the input and
output layers, respectively. In Fig. 1, blue double-lined
rectangles indicate spatio-temporal learning rule (STLR)
synapses, an orange rectangle indicates Hebbian learning
rule (HBLR) synapse, and white circles indicate TSNs.

The input u1(t) is the sum of outputs from all its own
synapses at time t, and defined by the following equation.

u1(t) = αS
2∑

j=1

wS
1, j(t)d

S
1, j(t) + α

HwH
1,1(t)dH

1,1(t), (1)

where αS (≥ 0) and αH (≥ 0) are the gain coefficients for
STLR and HBLR synapses, respectively. In some experi-
ments [2, 4], it is preferable to set αS larger than αH, there-
fore, we use αS = 0.95 and αH = 0.05 in this study.

As shown in Fig. 1, wS
1, j(t) is the weight values of the

STLR synapses between the output layer neuron and the j-
th input layer neuron, and wH

1,1(t) is the weight value of the
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Figure 1: The small eSTCLMN [2] used in the simple nu-
merical experiments (STLR synapses M = 2, and HBLR
synapse N = 1)．

HBLR synapse (self-feedback coupling). dS
1, j(t) and dH

1,1(t)
are the outputs of the j-th STLR synapse and the HBLR
synapse of the output neuron, respectively.

2.2. Two-variable Spiking Neuron Model

The eSTCLMN model conventionally used LIF neurons
[2]. However, we instead introduce TSNs in the eST-
CLMN.

Figure 2 shows the TSN circuit [7]. In the figure, the in-
ternal state voltage pi(t), and the recovery variable voltage
vi(t) of the i-th TSN at time t, which are respectively given
by

Cp
dpi(t)

dt
= g1(pi(t)) − g2(pleak) − g3(vi(t)) + ui(t), (2)

Cv
dvi(t)

dt
= −g4(vi(t), a) + g5(yi(t), b), (3)

where Cp and Cv are the values of capacitance that store the
internal state charge and the recovery variable charge, re-
spectively. pleak is the voltage to adjust for charge leakage,
and ui(t) is the input current. In Eqs. (2) and (3), g1(·), g2(·),
g3(·), g4(·), and g5(·) are conductance, which are functions
that approximate circuit characteristics. In Eq. (3), a is the
voltage for adjusting the time constant of the recovery vari-
able voltage vi(t), and b is the voltage for controlling the
current to the capacitance Cv during neuron firing.

The output voltage yi(t) of i-th TSN is given by

yi(t) =
VDD

1 + exp (−(p(t) − pth)/εP)
, (4)

where VDD is the supply voltage, pth is the threshold volt-
age, and εP is gain of the comparator at the output. When
the neuron fires (pi(t) ≥ pth), the internal state voltage is
reset as pi(t) = c, where c is the reset voltage.

Figure 2: The schematic of the two-variable spiking neuron
model [7]．

2.3. STLR and HBLR Synapse Models

STLR synapses update their weight values, when signals
are input to themselves, based on their coincidence factor
with other synapses [1]. The STLR synapses shown in Fig.
1 are updated with the following equations.

dwS
1,1(t)

dt
= ηSh

(
p1(t) − wS

1,2(t)dS
1,2(t)
)
, (5)

dwS
1,2(t)

dt
= ηSh

(
p1(t) − wS

1,1(t)dS
1,1(t)
)
, (6)

where ηS (≥ 0) is the learning coefficient, and h(·) is a func-
tion that switches between long-term potentiation and long-
term depression [2].

Similar to the general Hebbian learning rule [8], the
HBLR synapses update the weight values according to the
timing of the input and output as

dwH
1,1(t)

dt
= ηHdH

1,1(t)y1(t), (7)

where ηH (≥ 0) is the learning coefficient.

3. Simple Numerical Experiments

In this section, we perform simple numerical experi-
ments on the eSTCLMN with TSNs to evaluate memory
state based on the OSR.

3.1. Chaos and RS Mode of TSN

As shown in Fig. 1, in the input layer (the neurons
enclosed by the dashed lines), TSNs are chaotic (Chaos
mode) generating chaotic spike trains instead of random
spike trains. In the Chaos mode, the TSN can convert
the spatio-temporal information into chaotic spike trains.
In this mode, the circuit parameters of the TSN are a =
0.15 [V], b = 0.11 [V], and c = 0.115 [V], respectively.

On the other hand, in the output layer (the neuron en-
closed by the dotted line), TSN works as a regular spike [9]
neuron (RS mode) which generates periodic spike trains.
In the RS mode, the TSN behaves like the LIF neuron.
For this mode, the circuit parameters of the TSN are a =
0.2 [V], b = 0.1 [V], and c = 0.05 [V], respectively.
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3.2. Encoding of Input Spatio-Temporal Information

The small eSTCLMN in Fig. 1 learns a sequence consist-
ing of 2-bit vectors as the spatio-temporal information. The
input 2-bit vectors, A1, A2, A3, and A4 used in this study
are (x1(t), x2(t)) = (0, 0), (0, 1), (1, 0), and (1, 1), respec-
tively. Here, x1(t) and x2(t) are the inputs to the neurons in
the input layer of the network, as shown in Fig. 1.

In addition, “0” and “1” are implemented in the circuit
in Fig. 2 as ui(t) = 0 [nA] and ui(t) = 80 [nA], respectively.

The l-th learning sequence is denoted as Pl =

(P(1),P(2),P(3),P(4)). For example, P1 = (A1,A2,A3,A4),
P2 = (A1,A2,A4,A3), · · · , P24 = (A4,A3,A2,A1). The time
duration of one input vector P(k) (k ∈ N, 1 ≤ k ≤ 4) is T
(6 [ms] in this study).

Figure 3 shows an example of converting spatio-
temporal information into spike trains in the case of P1.
In Fig. 3, yin

1 (t) and yin
2 (t) represent the outputs of the TSN

in the input layer, respectively, as shown in Fig. 1. In this
study, the total time length of the learning sequence of Pl

is 4T = 24 [ms].

3.3. Numerical Experimental Results

Figure 4 shows the histogram of the weight values of
the STLR and HBLR synapses after learning by using
the 24 different sequences Pl. In the figure, the gray
bars show the initial weight values of the STLR synapses
(wS

1,1(0) = 0.87 and wS
1,2(0) = 0.97), and the blue and or-

ange bars show the frequency of STLR and HBLR synapse
weight values after learning (t = 24 [ms]) for 24 different
sequences, respectively.

From this result, we confirm that the distribution of the
weight values became wider as a result of learning. This
implies that spatio-temporal information is separated, and
stored in the weight space mostly due to the STLR.

3.4. Memory State Evaluation Based on Output Spike
Rate

To investigate the memory state of the eSTCLMN in
detail, we input a test sequence Ptest while the synaptic

Figure 3: An example of the conversion of spatio-temporal
information into spike trains in the input layer.

Figure 4: The histogram of STLR and HBLR synaptic
weight values after learning.

weight values are fixed after learning. Ptest is a random
spike sequence whose duration is 4T .

The OSR of the neuron in the output layer is introduced
as

OSR =
1
IS
· 1

3T

∫ 4T

T
y1(ttest) dttest, (8)

where ttest is the time for the test sequence, and IS is the
average frequency of the input spike train, which is 10
[kHz] in the simulations. To calculate OSR, y1(ttest) for
0 ≤ ttest < T , i.e., 6 [ms] is excluded from the calculation
to initialize the internal state p1(ttest). As shown in Eq. (8),
the output spike rate is averaged over the time length of 3T .

The histogram of OSRs, which were obtained after each
Pl read by Ptest, is shown in Fig. 5. The histogram are
colored according to the first vector P(1) in Pl, such that
P1 to P6 are blue (P(1) = A1), P7 to P12 are orange
(P(1) = A2), P13 to P18 are yellow (P(1) = A3), and P19
to P24 are purple (P(1) = A4).

Figure 5 confirms that learning sequences with the com-
mon P(1) show similar OSR values. In addition, it could
be shown that the distribution characteristics of OSR are
resembled to that of the synaptic weights values shown in
Fig. 4.

For more detail analyses in the case of P(1) = A1,
P(2) and P(3) are also colored with different colors as in
Fig. 6(a) and Figs. 6(b)–(d), respectively. In Fig. 6(a), P1
and P2 are orange (P(2) = A2), P3 and P4 are yellow
(P(2) = A3), and P5 and P6 are purple (P(2) = A4). In
Figs. 6(b)–(d), P3 and P5 are orange (P(3) = A2), P1
and P6 are yellow (P(3) = A3), and P2 and P4 are pur-
ple (P(3) = A4).

These results show that OSRs can give different val-
ues depending on the temporal context in the learned se-
quence Pl when the Ptest is applied. For example, if the
OSR ≈ 11 [%], we could consider that learned sequence is
P2 = (A1,A2,A4,A3). In conclusion, by Ptest, it would
be possible to retrieve the spatio-temporal memory infor-
mation using OSRs.
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Figure 5: The histogram of OSRs when the test sequence
Ptest is applied. Each first input vector P(1) in Pl is col-
ored as; A1: blue, A2: orange, A3: yellow, A4: purple. A∗
represents an arbitrary vector.

Figure 6: The histogram depicted for learning sequences
P1 to P6 of which P(1) = A1 in Fig. 5. (a) The bars
are colored according to P(2) in Pl. Results (b) with
learned sequence of (A1,A2,A∗,A∗), (c) with learned se-
quence of (A1,A3,A∗,A∗), and (d) with learned sequence
of (A1,A4,A∗,A∗).

4. Conclusion

We proposed the method to evaluate the memory state
of the eSTCLMN, in which spatio-temporal information
is embedded as a memory, by employing OSR as a novel
measure. As a result, similar distributional characteristics
of OSRs to that of the synaptic weight values after learning
were confirmed.

In the previous studies, it was suggested that the spatio-
temporal information is embedded in the synaptic weight
space. However, how to retrieve the memory is not clear
yet. This study gave one method to read out some memory
information using OSRs.

In the future, we will implement hardware of the eST-
CLMN with TSNs.
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