
Topological Inference of State Space as Effective Goal of Dynamics Learning

Taiki Yamada†, Kantaro Fujiwara†

†Graduate School of Information Science and Technology, University of Tokyo
7–3–1 Hongo, Bunkyo–ku, Tokyo 113-8656, Japan

Email: yamada-taiki@g.ecc.u-tokyo.ac.jp, kantaro@g.ecc.u-tokyo.ac.jp

Abstract— Our brain functions rely on the ability to detect
the current states of the outside world and infer their evolu-
tion. Thus, studying the requirements to achieve dynamics
learning is necessary to understand the brain.

Reservoir computing (RC) is a recent representative
method for deterministic dynamics learning. Although
both applicational and theoretical works support the poten-
tial of RC, few studies about the achievability of learning
in realistic situations exist. This lack of understanding is
fatal for further applications, especially when one wants to
use the RC framework as a model of the brain.

Inspired by previous works, this paper will consider a
relaxed but necessary goal of dynamics learning regarding
topological inference of state space. This relaxation allows
us to consider the achievability of learning with the finite
number of learning iterations and the presence of noise in
observations.

Considered learning goal enables us to treat both de-
terministic and stochastic observations in a unified way.
Therefore, for future works, we expect the development of
theories motivated by deterministic and stochastic notions,
which facilitate further understanding of our brain.

1. Introduction

Recent developments in machine learning methods allow
us to shift our attention from static information learning
to dynamics learning [1, 2]. The mechanism of dynamics
learning has been studied with focusing on the reservoir
network (RC) as a learning method [1] by using the theory
of dynamical systems [3].

However, there are few studies about the mechanism of
dynamics learning considering the finiteness of samplings
size and the effects of noise in computations potentially
leading to learning failure. This is because results of dy-
namics learning were always reported through the achieve-
ments of necessary conditions [1, 4], although dynamics
learning failure is comparably as common as success (See
Supplementary Material). Therefore, investigations of the
cases where dynamic learnings fail is crucial for future
theoretical development and deeper understanding of the
mechanism of dynamics learning.
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This study focused on the inference of topological invari-
ant called homology as a necessary condition of dynamics
learning inspired by previous work [4]. We suggested a
conjecture on the dependencies of success and failure of
homology inference on the number of samplings and sam-
pling noise. This study aims to investigate the validity
of our conjecture for typical dynamical systems: a rota-
tion map, an expanding map, the Lorenz equation, and the
Rössler equation.

To state our conjecture, we first reviewed the relation-
ships between homology inference and dynamics learning
in 1.1, then briefly introduced homology in 1.2. Then, we
proposed our conjecture and explained simulation settings
for testing our conjecture in 2. In section 3, We illustrated
simulation results and their indications.

1.1. Topological inference for invariant set as an neces-
sary goal of Dynamics Learning

We denoted a sequence of samplings with length N ∈
N ∪ {∞} as S(N) = 〈x0, x1, . . . xN〉, and the set of all points
in S(N) as {S(N)} = {xi}Ni=0.

In typical studies of dynamics learning, a sequence of
samplings is an orbit S(N)

f−orbit = 〈x, f (x), · · · , f N−1(x)〉 ob-
tained by a target dynamical system (X, f ), where X is a
state space and f is a map from X to itself. The common
goal of dynamics learning is to obtain an estimated dynami-
cal system (Y, g), which is topologically conjugate to (X, f ).
Topological conjugacy between (X,Y) and (Y, g) implies X
and Y has the same topological property. Thus, a sampling
sequence S(N) for dynamics learning with a target (X, f )
should contain knowledge on the topological property of
X. This fact motivates us to investigate whether the behav-
ior of topological inference based on S(N)

f−orbit tells us about
the significance of a map f in terms of dynamics learning.
In this study, we focused on one of the topological proper-
ties of a space called homology. We considered dynamical
systems which satisfy cl({S(∞)

f−orbit}) = X, so that homology
inference will surely success with N � 1.

1.2. Homology estimation by samplings

Homology is a topological invariant between topologi-
cally equivalent spaces. Roughly speaking, homology tells
us the information of generalized holes in a topological
space. For instance, a 0-dimensional hole is a connected
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component, and a 1-dimensional hole is a cycle in topolog-
ical space. For rigorous definitions of homology, see [5].

We now consider homology inference by using a finite
set of samplings {S(N)} ⊂ X ⊂ Rd. Since a finite set of
samplings {S(N)} itself has nothing other than the trivial
homology: at most N separated components, one needs to
consider the thicken set: BR({S(N)}) = ∪N

i=1 BR(xi), where
BR(x) is the closed ball of Rd with radius R > 0 centerd at
x (Figure 1).

Figure 1: Homology estimation by using a finite number of
samplings. Hom0 and Hom1 indicate the number of con-
nected components and the number of cycles, respectively.

We used the algorithm [5] based on matrix reductions to
compute the homology of the thicken set BR({S(N)}), which
approximates the homology of BR(X), and thus so of X.

Notice that there is the interval [R,R] of thickening ra-
dius R which results in the correct estimation of the ho-
mology of the target space. Hence, we needed to choose
an appropriate value of radius R ∈ [R,R] to infer the ho-
mology of the target space. The topological data analysis
called the persistent homology solves this issue [6]. Thus,
by using the persistent homology, we could reliably obtain
an interval of appropriate values of radius [R,R] and a suf-
ficient number of samplings N for the success of homology
estimation at each simulation.

2. Methods

2.1. Conjecture statement

For a given sequence of samplings S(∞) from X, we de-
fined the inference result IN,R(S(∞)) by:

IN,R(S(∞)) =

1 if Hom[BR({S(N)})] = Hom[BR(X)],
0 otherwise.

, where Hom[A] denotes the homology of a space A.
In order to investigate the effects of noise in samplings,

we considered the psuedo-orbits of S(∞)
f−orbit restricted on

{S(∞)
f−orbit} denoted as S(∞)

f−δ with a parameter δ ≥ 0 (Fig-

ure 2). Specifically, we defined the i-th sampling of S(∞)
f−δ

as a randomly chosen element of Bδ( f i−1(x)) ∩ {S(∞)
f−orbit}.

Note that S(∞)
f−0 = S

(∞)
f−orbit , and S(∞)

f−∞ is equivalent to a

sequence of random samplings of points of S(∞)
f−orbit. We

denoted S(∞)
f−∞ as S(∞)

f−random for clarity.

Figure 2: Examples of S(N)
f−δ. Colored lines indicate tempo-

ral adjacency of samples.

The sequence of samplings S(∞)
f−δ (δ ≥ 0) depends on a

random choice of initial state. Additionally, for δ > 0, S(∞)
f−δ

also depends on a sequence of random choices of a next
state. Thus inference result IN,R(S(∞)

f−δ), which is a function

of the sequence of samplings S(∞)
f−δ, is a random variable.

Then, we defined the parameter θ f−δ(N,R) by:

θ f−δ(N,R) := Prob
[
IN,R(S(N)

f−δ) = 1
]
.

Here, we are ready to state our following conjecture for a
given dynamical system (X, f ):

Conjecture: One can learn dynamics f by using S(∞)
f−δ iff

∃N ∈ N,∃R > 0, θ f−δ(N,R) , θ f−random(N,R).

This conjecture is motivated by the fact that no one can
learn dynamics f by using S(∞)

f−random since the stochasticity
hides knowledge of dynamics f . In other words, we hy-
pothesized that we could detect the gap between S(∞)

f−δ and

S(∞)
f−random in terms of dynamics learnings through the dif-

ference of parameters θ f−δ(N,R) and θ f−random(N,R) which
reflect the properties of homology inference. Note that the
superiority of orbits than random sampling: θ f−δ(N,R) >
θ f−random(N,R) doesn’t necessarily hold, since an psuedo-
orbit S(N)

f−δ reflecting property of f could bias and prevent
homology inference with intermidiate values of (N,R).

In this study, we conducted an approximation of the
hypothesis testing with the null hypothesis H0 : ∀N ∈
N,∀R > 0, θ f−δ(N,R) = θ f−random(N,R). As we mentioned
in 1.2, by using the persistent homology, we reliably esti-
mated an adequate number of samplings and the thickening
radius denoted as Nmax and R < Rmax respectively. To test
our null hypothesis H0, we considered 10 × 10 gird choice
of paris {(Ni,R j)}1≤i, j≤10, where Ni = 1 + ibNmax/10c,Ri =

ibRmax/10c. For each pair (Ni,R j), we conducted two-sided
tests by using Fisher’s exact test, which is implemented by
the fishertest function in MATLAB, with the following
statistical hypotheses:

(Null) H(i, j)
0 :θ f−δ(Ni,R j) = θ f−random(Ni,R j),

(Alternative) H(i, j)
1 :θ f−δ(Ni,R j) , θ f−random(Ni,R j).

Then, we supposed H0 was rejected iff H(i, j)
0 are rejected

for some 1 ≤ i, j ≤ 10. We conducted all tests by 10 sam-
ples of S(∞)

f−δ with a significance level α = 0.01 for each
δ ∈ {0, logspace(10−3, diam(X), 10)}, where logspace is
the logspace function in MATLAB and diam(X) is the di-
ameter of X.
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2.2. Simulations

To illustrate the principle of our conjecture, we first con-
ducted hypothesis testing at δ ∈ {0,∞} for the rotation map
frot and the expanding map fexp on S 1 defined by:

xi+1 = frot(xi) = xi + 1 + ϵi mod 2π, (1)
xi+1 = fexp(xi) = 2xi + ϵi mod 2π. (2)

ϵi in (1, 2) is a random variables which takes a 0 or ϵ with
the same probability at each index i, where ϵ := 2−52 is
the machine epsilon in MATLAB. Infinitesimal perturba-
tion ϵi is mainly for the expanding map fexp to avoid ar-
tificial convergence of trajectories due to the digital rep-
resentation of an initial value, which can also be seen in
numerical simulations of the Bernoulli shift map [7]. For
consistency, we implemented perturbation ϵi to frot, as well
as fexp. We embedded S 1 to Euclidean space by the trans-
formation x 7→ [cos x, sin x], and used {[cos xi, sin xi]}∞i=0 as
S(∞)

f−orbit for homology inference. For frot and fexp, we got
initial state x0 by the uniform distribution on S 1, which is
equivalent to chose a point randomly from {S(∞)

f−orbit}.
In addition to frot, fexp, we conducted hypoth-

esis testing with the null hypothesis H0 at δ ∈
{0, logspace(10−3, diam(X), 10)} for flows of the Lorenz
equation and the Rössler equation defined by:

Lorenz:


ẋ = σ(y − x),
ẏ = x(ρ − z) − y,
ż = xy − βz,

(3)

Rössler:


ẋ = −y − z,
ẏ = x + ay,
ż = b + xz − cz,

(4)

We used fixed parameters (σ, ρ, β) = (10, 28, 8/3) and
(a, b, c) = (0.36, 0.4, 4.5) for all simulations. In this study,
we only cared about 1-dimensional holes (cycles) in an
attractor of systems (3, 4) to reduce computational costs.
In this case, it is sufficient to consider 2-dimensional state
space. For this purpose, we took the 2-dimensional time-
delay coordinate of the first variable [x(t), x(t − T )] of each
system. We fixed time delay T at different values for each
system, respectively. Then we defined a map of dynami-
cal system by f : [x(ti), x(ti − T )] 7→ [x(ti+1), x(ti+1 − T )],
and used temporary discretized orbits {[x(ti), x(ti − T )]}∞i=0

as S(N)
f−orbit for homology inference. We got an initial

state [x(t0), x(t0 − T )] by a random choice from S(50000)
f−orbit ,

which is numerical approximation of S(∞)
f−orbit. We used

Hom[BR({S(N)
f−orbit})] with sufficiently large N = Nmax as an

approximation of true homology (Figure 3).

Figure 3: Homology of attractors in the Lorenz equa-
tion and the Rössler equation on time-delay coordinate.
The right columns show connections between points (blue
lines). red-colored sheds indicate there is no blank.

Although temporal discretization with different time
width ∆t = ti+1 − ti result in quantitative difference
of θ f−δ(N,R), we emphasize that, as long as S(N)

f−δ and

S(N)
f−random are sharing the same time scale, test result for H0

is preserved. Thus, as well as delay T , we used different
time widths ∆t for different dynamical systems as needed.

We summarized the parameters settings for each dynam-
ical system related to homology inference on Table 1.

Table 1: Parameters related to homology inference
Nmax Rmax T [s] ∆t [s]

frot, fexp 100 1.5 - -
Lorenz 1000 5 0.15 0.05
Rössler 1000 2 0.7 0.5

3. Results and Discussion

3.1. H0 was rejected for frot, but not for fexp

Figure 4 shows the results of hypothesis testings with
H(i, j)

0 (1 ≤ i, j ≤ 10) as null hypotheses for frot and fexp.
The quantitative property of θ∗(N,R), colored by green to
yellow, was intuitively reasonable. Namely, we got low val-
ues of inference accuracy θ∗(N,R) at extremely large value
of Rmax since, with such value of Rmax, any pairs of points
in S(N) were connected, and thus there was no chance to
detected a cycle in a state space. Also, we got low values
of inference accuracy θ∗(N,R) by insufficiency of the num-
ber of samplings N with respect to R, which resulted in the
detections of separated components rather than a cycle.

Importantly, we found significant differences between
θ frot−orbit(N,R) and θ frot−random(N,R) for some paris of (N,R),
but not so between θ fexp−orbit(N,R) and θ fexp−orbit(N,R).
Thus, we concluded that H0 was rejected for frot, but not
for fexp. Considering the observation that learning of fexp
is harder compared with so of fexp (Figure 6 in Supplemen-
tary Material), this results suggests that our conjecture is
valid for both frot and fexp.
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Figure 4: θ∗(N,R) and testing results for frot and fexp

3.2. H0 was rejected for the Lorenz equation, but not
for the Rössler equation

Figure 5 shows the results of hypothesis testings for the
Lorenz equation and the Rössler equation, in the same man-
ner as Figure 4. Similar to the indications of Figure 4, we
concluded that H0 was rejected for the Lorenz equation,
but not for Rössler equation. Again, results in Figure 5
supported our conjecture for both frot and fexp.

Moreover, we found that the counts of H(i, j)
0 rejections,

this presumably corresponds the level of H0 rejection, in-
crease with the increasing δ from 0 to 0.003 (Figure 5).
This was surprising because since tests evaluate the signif-
icant difference from the case of δ = ∞, and hence the dif-
ference was expected to decrease monotonically with the
increasing of δ. Therefore, it is interesting to investigate
whether the specific value of δ, which determine the ampli-
tude of sampling noise, has any means for the learning of
the Lorenz equation.

Figure 5: θ∗(N,R) and testing results for the Lorenz equa-
tion and the Rössler equation at different δ

4. Conclusion

In this study, we suggested a conjecture for homology
inference properties of samplings from state space of a dy-
namical system, and investigated its validity. Simulation
results suggested that our conjecture holds for typical dy-
namical systems. For future work, considering to expand
the scope of our conjecture and provide concrete interpre-
tations related to dynamics learning is important.
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5. Supplementary Material

Here, we illustrated typical examples of dynamics learn-
ing by using a reservoir computing (RC) defined by
rt+1 = g(xt, rt) = tanh [Art + Bxt], where xt ∈ Rm,
rt ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, tanh : [r(1)

t · · · r
(n)
t ]> 7→

[tanh(r(1)
t ) · · · tanh(r(n)

t )]>. xt is a input signal from a dy-
namical system f to be learned. In this case, obtaining
W ∈ Rm×n which minimize |Wrt − xt | (t ≥ 0) com-
pletes a dynamics learning, and the learned dynamics is
gW : rt 7→ g(Wrt, rt). Figure 6 shows an orbit of gW and
its targets, for each dynamical system with the same pa-
rameters settings of RC. Figure 6 indicates that dynamcics
learning of the expanding map and the Rössler equation is
harder than that of the rotaion map and the Lorenz equa-
tion.

Figure 6: Success and failure of dynamics learning. Plots
contain targets (black) and predictions (blue and green).
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