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Abstract—The inverse problem of estimating parame-
ters from spike trains needs a stochastic approach to find
most likely solutions. Since the brain exhibits complicated
dynamics that is difficult for the model to reproduce, the
modeling errors are inevitable. In our recent study, we
proposed a Bayesian framework to estimate two model pa-
rameters in a segment-wise fashion and then to merge the
segmental estimates into a single estimate. The segmen-
tal Bayes compensated the modeling errors caused by the
mismatch between the brain and the model. The previous
study, however, has not yet been properly validated, be-
cause it was applied to experimental data, the true parame-
ter values of which are unknown. The aim of this paper is
to evaluate the segmental Bayes using simulated spike data,
for which the true parameter values are known. The perfor-
mance evaluation confirmed that the segmental Bayes out-
performs other approaches. It also has a strong robustness
against non-stationarity of the spike data. We thus con-
clude that the segmental Bayes provides a useful tool in
neuroscience to estimate parameters from spike trains.

1. Introduction

Multiple electrodes have become a standard tool in neu-
roscience research that enables simultaneous measurement
of a population of neuronl activities in a brain region. Such
measurement data provide important analysis challenges
that must be resolved to understand the brain functions.
The parameter estimation is one of the indispensable ones,
because some parameters can not be experimentally mea-
sured but are needed to construct computational models of
the brain. Although the computational models are of exten-
sive use in neuroscience, they usually face two challenges:
first, non-stationarity of the brain activities and, second, in-
sufficiency of the computational model in space and time
compared with the brain. The first difficulty arises from
the fact that most models assume stationarity in the neu-
ronal dynamics. By contrast, the neuronal firings in the
real brain shows different dynamics from time to time. The
second difficulty is due to the fact that the computational
model is typically composed of a far smaller number of the
neuronal elements and connectivities compared to the real
network of the brain. These difficulties inevitably cause
modeling errors and thus cause inaccurate solutions of the
inverse problem for estimating model parameters from the
spike data [1, 2].

In our recent study [1], we proposed a stochastic ap-
proach to reduce the modeling errors by allowing the pa-
rameter values to be varied in time segments. In this
segment-wise approach, the parameters were firstly esti-
mated segment by segment. This relaxes the condition of
the parameter search and thus enables to capture the com-
plicated firing dynamics of experimental spike data. The
segmental estimates were then integrated by a hierarchical
Bayesian framework, resulting in a single estimate. As a
consequence, the segmental Bayes has been shown to min-
imize the fitting error between experimental and simulation
data in the feature space. Our approach, however, has not
yet been properly validated because the true parameter val-
ues of the experimental data were not known. To further
demonstrate its usability, validation of the previously de-
veloped approach is desired. By adopting the same task of
estimating two conductance values in the inferior olive net-
work model, this study utilizes simulated spike data as the
test data. The simulation data are suitable for the validation
purpose, because the true parameter values are known. The
present study confirmed that the segmental Bayesian infer-
ence provides smaller estimation errors than the conven-
tional Bayesian inference, which finds the estimates once
across the entire spike data, or the minimum error method
[2], which directly finds the closest match in the feature
space. Robustness of the segmental Bayesian approach
against highly non-stationary dynamics of the spike data
is also demonstrated. It thus provides an effective approach
to resolve the inverse problem even when the model is an
imperfect representation of the experimental data.

2. Methods

2.1. Simulation model

The simulation data was generated using the neuronal
model developed in the previous study [2]. The model con-
sisted of 3 X 3 neurons, each of which was connected to
its four neighbouring neurons via gap junctions (g.). Each
neuron was composed by the soma, dendrite and spine
compartments. All compartments received excitatory (g.)
and inhibitory (g;) inputs from Gaussian noise generators.
The two parameters of interest, g; and g., were varied in
the range of [0-1.5 mS/cm?] with an increment of 0.05
mS/cm?.
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2.2. The segmental Bayesian inference

In this section, we briefly describe the segmental
Bayesian framework to estimate the two parameters, g; and
8¢, from neuronal spike trains. The detailed formulas are
described in our previous paper [1]. The firing dynamics
were characterized by a feature vector (FV) composed of
sixty seven features, e.g., firing rate, local variation, cross-
correlation, auto-correlation, and minimal distance. The
FV was transformed into lower-dimensional space using
principal component analysis (PCA). Likelihood function
was estimated on the simulation (SIM) data using the Gaus-
sian mixture model in the 3-dimensional PCA space. Fi-
nally, the conductance values g = (g;,g.) can be deter-
mined from the feature vector y by maximizing the pos-
terior probability P(g|y) in accordance with the Bayes’ the-
orem:

P(gly) o< P(ylg)P(g) ey

where P(y|g) and P(g) are the likelihood and prior of pa-
rameter values g, respectively.

The main point of our proposed framework is introduc-
tion the neuronal constraint, which deals with the estima-
tion errors caused by the modeling errors, to the Bayesian
inference. To minimize such errors, we divided the spike
data of each neuron into small time-segments, applied the
Bayesian inference to estimate g; and g, for every segment,
and then merged the segmental estimates into a single es-
timate for each neuron (Figure 1). Here, the variance of
neuronal constraint was optimized so as to maximize the
model evidence value.
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Figure 1: A schematic diagram of the segmental Bayesian
inference.

2.3. Simulating non-stationarity in test data

The basic idea of the segmental Bayes is to deal
with non-stationary dynamics of the experimental spike
data. Such non-stationarity arises typically from high-
dimensional spatio-temporal system. Unfortunately, our
mathematical model was not complicated enough to pro-
duce such non-stationary dynamics. Figure 2 shows the

firing rate extracted from spike trains of representative 13
experimental (EXP) and 9 SIM neurons. While exhibit-
ing a comparable mean firing frequency (around 1Hz), the
SIM neurons tend to fire periodic and stable in time, as
well as there is not much different in firings among those
neurons (STD of firing frequency across time and neurons,
0.23 and 0.30, respectively). By contrast, firing frequency
of EXP neurons vary strongly in both time and space (0.28
and 0.68). This example indicates that the present simu-
lation failed to precisely reproduce the non-stationarity of
EXP data, and thus was not suitable for testing the segmen-
tal Bayes.
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Figure 2: Firing rate averaged over 13 EXP (black trace)
and 9 SIM (red trace) neurons. Shaded area represents stan-
dard deviation across neurons.

We thus propose a simple method to simulate non-
stationarity in the test data as follows. Suppose that the test
spike data was selected at a parameter value g = (g;, &),
from which we generate 500s spike trains. Unlike the sim-
ulation of the forward model in which the parameter value
was fixed, the value of g in the simulation of test data
was adjusted in every 10s. The adjusting values of g was
randomly chosen from the normal (Gaussian) distribution
N(g,o?) with the mean g and the variance o>. Here, o
can be regarded as a parameter to control the level of non-
stationarity in the test data. Then, the PCA scores y of the
test data is evaluated as mentioned previously. We conven-
tionally define the standard deviation of the first PCA score
of y as the non-stationary level. It is worth noting that sim-
ulating non-stationarity in the test data is independent to
the construction of the forward model.

3. Results

3.1. Effect of the neuronal constraint

Figure 3 are pseudo-color representation of the poste-
rior probability of g; and g, estimated for a representative
SIM neuron by the Bayesian inference under the relaxed
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neuronal constraint (Figure 3A). The estimates were dif-
fused broadly probably because of the fluctuations of the
segmental estimates. By contrast, the g; and g, of the same
spike data estimated by Bayesian inference under the opti-
mized neuronal constraint were localized at the true value
(0.75, 0.75) (Figure 3B).
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Figure 3: Posterior estimates of a representative SIM neu-
ron with relaxed (A) and optimized (B) neuronal constraint.

3.2. Non-stationarity level of the test data

Figure 4 shows spike trains of 9 simulation neurons at
a representative model parameter g = (g;, g.) = (0.7,0.7)
before (Figure 4A) and after (Figure 4B) the manipula-
tion process described in 2.3. The firing dynamics of the
test data significantly fluctuate: dense at certain times and
sparse at others, showing a clear improvement of the non-
stationarity.
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Figure 4: Spike trains of representative simulation neurons
before (A) and after (B) the non-stationarity manipulation.

We also investigate the dependence of non-stationary
level of the test data on the parameter o-. Figure 5 indicates
that increasing the variance parameter o monotonically im-
proved the non-stationarity of the test data. The amount
of improvement evaluated with o = 0.3 (2.77 + 0.8) and
o =0.5(3.31 +1.01) were about 113% and 155%, respec-
tively, compared to that evaluated with o = 0.1 (1.3+0.38).

3.3. Parameter estimation for the test data

For each test data, we applied three different approaches
to estimate the parameter values (g; and g.). They are the
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Figure 5: Dependence of non-stationary level on the pa-
rameter o ([0.1-0.5]). Solid and shaded area, mean and
standard deviation over 100 trials at each o.

segmental Bayes, the non-segmental Bayes, which finds
the estimates once across the entire spike data, and mini-
mum error method, which determines the estimate as the
closest match in the PCA space [3]. The test data sets
were generated by a random set of 100 parameter values
g = (gi, g.) for varied parameter o in the range [0.1-0.5].
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Figure 6: Estimation errors of g; (A) and g. (B) by three
different approaches: Segmental Bayes (Seg, red trace),
Non-segmental Bayes (NSeg, green trace) and minimum
error method (MPE, blue trace). Error bars are standard
deviations across 100 trials.

Figure 6 shows the absolute differences between the
estimated and true parameter values of g; (Figure 6A)
and g. (Figure 6B), independently. Segmental Bayes out-
performed both non-segmental Bayes and minimum error
method for g; and g, estimation in all non-stationarity lev-
els. These results are consistent with our view that the
segmental Bayes minimizes errors in g; and g. estimates
because of the non-stationary firing dynamics. For the two
comparative approaches, there is a tendency that increasing
the non-stationary level of the test data decreased the accu-
racy of both g; and g, estimation, whereas it is less clear for
the segmental Bayes (Figure 6B). It is notable that g; errors
for all three approaches were higher than those of g.. This
situation is opposite to our findings in [3] and probably due
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to the effect of non-stationarity in the test data.

Finally, we tested the superiority of the segmental
Bayesian inference over the two comparative approaches in
terms of the combined estimation error (Euclidean distance
between the true and estimated values in the (g;, g.) space).
The magnitude of the estimation error was smaller for the
segmental Bayesian inference (Figure 7) than that for non-
segmental Bayes and minimum error method across the
three non-stationary levels, and the statistical significance
of the error was largest (p = 4.6E — 10 and p = 2.3E — 24
by t-tests between Seg-NSeg and Seg-MPE, respectively),
moderate (p = 6.9E — 5 and p = 1.3E — 23) and minimum
(p =05and p = 1.1E - 14) for o = 0.5, 0 = 0.3 and
o = 0.1 values, respectively, corresponding to the degree
of the non-stationarity of the test data sets. These find-
ings confirm that segmental Bayesian inference performs
much better than the other methods in cases of highly non-
stationary spike data.
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Figure 7: Superiority of segmental Bayesian inference
(Seg, red columns) over two other methods (NSeg, green
columns and MPE, dark blue columns) at three non-
stationary levels of test data sets. The non-stationary level
of the test data (orange trace) are from the results of Fig-
ure 5. Asterisks represent the significance level by t-tests
between Seg-NSeg and Seg-MPE. ***p < 0.0001.

4. Conclusions

The goal of our studies was to resolve the inverse prob-
lem of estimating two model parameters (g; and g.) from
spike train data. The fact that there is a huge mismatch
between the model and the brain, as well as the non-
stationarity of the firing dynamics of real neurons in-
evitably cause the modeling errors and, consequently, the
estimation errors. The segmental Bayes developed in our
previous study [1] aimed to compensate for these errors by
allowing segmental fluctuations of the parameter estimates
in the neuronal constraint based. The segmental Bayes
has been shown to perform better than the non-segmental
Bayes and the minimum error method. It significantly im-

proved the fitting between the simulation and experimental
data in the feature space. However, the estimation accuracy
has not yet been properly evaluated, because the true values
for g; and g, were unknown in the experiment conditions.

In this paper, we attempted to verify the segmental Bayes
approach using simulated spike data as the test data sets.
Due to a rather low complexity of the model, the simula-
tion data used for constructing the forward model is not
suitable for the verification purpose. We thus manipulated
the non-stationarity in the test data by adjusting the param-
eter values during the simulation. Since the true values of
gi and g, were known in the test data, it was straightfor-
ward to evaluate the estimation errors. The two impor-
tant findings in our previous study were confirmed from
this study. First, segmental Bayes significantly reduces the
estimation errors compared to the two comparative meth-
ods. Second, it is also robust to the non-stationarity of the
spike data. These results suggest that segmental Bayes is
highly recommended for estimating the model parameters
from spike data of real neurons that usually exhibits highly
non-stationary dynamics. In conclusion, we argue that the
segmental Bayesian inference is a useful tool to resolve the
inverse problem even in the presence of the imperfectness
of the model.
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