

TS-Type Fuzzy Automaton for Supervisory Control

Janos L. Grantner† and George A. Fodor‡

† Dept. of Electrical and Computer Engineering, Western Michigan University

Kalamazoo, MI 49008-5329, U.S.A.
‡ABB AB

SE-72159, Vasteras, Sweden
Email: janos.grantner@wmich.edu, george.a.fodor@se.abb.com

Abstract– Event-driven, large control systems often

encounter unexpected events in an uncertain environment.
Using a fuzzy automaton offers an effective approximation
method to model continuous and discrete signals in a
single theoretical framework. A Max-Min automaton can
successfully model a cluster of relevant states when a
decision is to be made on the next state of a goal path at
the supervisory level. However, to provide analytical
proof for stability of a fuzzy controller a Takagi-Sugeno
inference model is preferred. In this paper a TS-type fuzzy
automaton is proposed.

1. Introduction

 Among the problems that characterize industrial
process control innovation, and which are not domain-
related, some of the difficult ones are as follows: (a) how
can new knowledge be introduced into a system, (b) how
can the system activate stored domain knowledge in an
autonomous way, (c) how can the knowledge be validated
(or otherwise detected as inappropriate) and (d) how can
the system recover if the new, activated knowledge (or the
currently active knowledge) is not suitable to handle the
situation at hand.

With respect to problem (d): there is a need for
computationally inexpensive fault detection and
identification (FDI) algorithms, and automated recovery
from faults. One aspect of FDI and automated recovery
from faults is the evaluation of the state transitions
between states of a large, complex system. It can be
accomplished by focusing only on clusters of relevant
states along the goal path to find a suitable next state. A
reconfigurable virtual Max-Min fuzzy automaton (also
referred to as the Hybrid Fuzzy-Boolean Finite State
Machine, HFB-FSM) can be used to model those clusters
of states. The other aspect of recovery is devising actuator
values in the chosen new state that facilitate the recovery
while keeping the system stable. A TS-type fuzzy
automaton is proposed to achieve this goal.

The rest of the paper is organized as follows: in Section
2 the key properties of the HFB-FSM model are
summarized. In Section 3 the definition of the proposed
TS-type fuzzy automaton model (TSTFA) that has been
developed from the HFB-FSM is given. In Section 4 the
concept of the virtual TSTFA automaton is described.
Conclusions are given in Section 5.

2. Extended HFB-FSM Automaton Model

The model of the Hybrid Fuzzy-Boolean Finite State

machine was presented in [1]. It was extended in [2] to
address the modeling requirements of a complex hybrid
system at a more flexible level. The notion of this fuzzy
automaton is based upon the premises as follows: the
fuzzy automaton can stay in some crisp states
simultaneously, to a certain degree in each. Those degrees
are defined by a state membership function. For each
fuzzy state there is just one dominant (crisp) state, though,
for which the state membership is a 1 (full membership). Each dominant state is associated with a linguistic model
for inference. For each fuzzy state a composite linguistic
model is devised using the composition of the linguistic
models of those contributing crisp states that has a greater
than 0 state membership degree in that fuzzy state. The
transitions between fuzzy states are based upon the
transitions defined between their dominant crisp states.

There is an underlying Boolean finite state machine to
implement the fuzzy automaton. The states of this
Boolean automaton are the dominant crisp states of the
fuzzy automaton. The fuzzy inputs (and even fuzzy
outputs, as an option) are mapped to sets of two-valued
logic variables using the B algorithm [1]. The analog
inputs with threshold also yield two-valued logic variables.
In addition, the automaton may have two-valued inputs as
well. All of these Boolean variables are used to devise the
next states of the two-valued state variables of the
underlying Boolean automaton. Two-valued outputs are
devised using all types of inputs and the current dominant
state. Fuzzy outputs are obtained through the
compositional rule of inference. Defuzzified outputs are
calculated by using a suitable defuzzification algorithm.

Formally, a HFB-FSM automaton with p states is
defined by the set of equations below:
 (1) SkkFk gSS ,:
 (2)),(*

SRGfR =

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 400 -

 (3)

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p
p

p

k
p

k

p

G

ββ

ββ

ββ

...
......

...
......

...

1

1

11
1

 (4) *RXZ FF o=
 (5))(FC ZDFZ =

 (6) ATAT XXifTRUEisX ≥
 (7))(FB XBX =
 (8))(FB ZBZ =
 (9)),,,,(BBTBByB yZXWXfY =

 (10)),,,(BTBBuB yXWXfU =

In Equation (1) a fuzzy state is defined by a dominant

crisp (Boolean) state along with a state membership
function: SFk stands for fuzzy state k, Sk represents crisp
state k, and gSk is the state membership function
associated with Sk (k=1,…, p). G stands for the matrix of
state membership functions. XF, WB, and XA stand for
fuzzy, two-valued (Boolean) and analog inputs with
associated XAT threshold values, respectively. A threshold
comparator module compares the value of each analog
signal with its associated threshold value to set the
corresponding XT signal as true, or false. ZF, ZC, and UB
stand for fuzzy, crisp (defuzzified), and two-valued
(Boolean) outputs, respectively.

In Equation (2) R* is the composite linguistic model,
and is the operator of composition in Equation (4).
Each crisp state of the HFB-FSM is characterized by an
aggregated, overall linguistic model, R

o

S or by a set of
linguistic sub-models in the case of multiple-input-single-
output (MISO), and multiple-input-multiple-output
(MIMO) systems. For each fuzzy state of the HFB-FSM
model, a R* composite linguistic model is created from
the finite set of RSi overall linguistic models (i=1,..,p).

Let the HFB-FSM be in fuzzy state SFk, then
 (11)

where β

)],min(),...,,max[min(11
*

Sp
k
pS

k
k RRR ββ=

k
1,…, βk

p stand for the degrees of state
membership function gSk and RS1,…, RSp are the
aggregated linguistic models [1] in crisp states S1,…, Sp,
respectively. In fact, Equation (11) is the computational
algorithm for Equation (2). By modifying the β degrees of
the state membership functions on-line, new R* composite
linguistic models can be created under real-time
conditions. The R* composite linguistic model is one of
the key concepts in defining the HFB-FSM automaton: it
decides how fuzzy outputs are inferred from the
knowledge base in different fuzzy states. In other words, it
reflects the fact of a fuzzy state transition by inferring

different fuzzy outputs even for identical fuzzy inputs in
two different states.

:R

XB, ZB, YB, and yB stand for two-valued Boolean inputs,
Boolean outputs (both devised from input and output
fuzzy sets using the B algorithm) and next states and
present states of the state variables, respectively. The ZC
crisp values of the fuzzy outputs are obtained by
evaluating a defuzzification strategy, DF.

The transitions between active composite linguistic
models are determined by the state transitions of the HFB-
FSM. The state transitions of the HFB-FSM are specified
by means of a sequence of changes in the states of the
fuzzy inputs (optionally, fuzzy outputs, too), of the analog
inputs with threshold, as well as of the two-valued inputs.
The changes in the states of the fuzzy inputs are mapped
into a corresponding sequence of changes of Boolean
input variable sets using the B algorithm. In this two-
valued domain, those changes are joined by the state
changes of the two-valued inputs and the true/false logic
values of the analog inputs with threshold. This combined
Boolean input sequence specification is used to synthesize
the crisp finite state machine section of the HFB-FSM.
Hence, the HFB-FSM model allows the integration of
fuzzy, analog and two-valued logic specifications to
describe a system’s dynamic behavior.

The integrated treatment of fuzzy, analog with
threshold, and two-valued signals is of great importance
for designing complex hybrid systems.

3. TS-Type Fuzzy Automaton Model (TSTFA)

The TSTFA model has been developed from the HFB-
FSM one such that the computational algorithm for the
linguistic model of Equation (2) and the inference
algorithm of Equation (4) are replaced by new equations
to comply with the Takagi-Sugeno (TS) model of fuzzy
systems [3]. Equation (5) is dropped because there is no
need for it in a TS system. Equation (8) is also dropped
because no fuzzy output is inferred from the linguistic
model anymore. Equations (1), (3) and (6)-(10) remain in
effect, however, Equation (9) is slightly revised due to the
drop of ZB.

In the TS model [3] the format of implications is
proposed as follows:

),...,(,..., 111 kkk xxgythenAisxAisxIf =
and g is a linear function such that
 kk xpxppg ,...,110 ++= (12)
where A1,…, Ak are fuzzy sets, x1,…, xk are fuzzy inputs
and output y is obtained as a crisp value. Suppose there
are n implications Ri (i=1,…, n) of the above format.
When the fuzzy inputs are given as singletons

00
11 ...,, kk xxxx ==

then the final output y is inferred in the following steps.

1) For each implication Ri (I = 1,…, n) yi is calculated by
the function gi in the consequence

- 401 -

 (13). 00

110 ,..., k
i
k

iii xpxppy ++=
2) The truth value of the proposition y=yi is calculated by
the equation
 (14) ||))(...)((|| 0

11
io

k
i
k

ii RxAxAyy ∧∧==

where |*| means the truth value of proposition *, ∧ stands
for min operation and A(x0) stands for the grade of
membership of x0 in fuzzy set A. For simplicity, |Ri| = 1is
assumed.

3) The final output y inferred from n implications is given
as the average of all yi with the weights |y = yi|:

∑

∑
=

×=
=

||
||

i

ii

yy
yyy

y (15)

In the TSTFA model the Takagi-Sugeno version of the
IF THEN rules is adopted as it is given in Equation (12).
The only change in the notation is that Z is used for output
rather than y.

),...,(,...,: 111 kkk xxgZthenAisxAisxIfR =
and g is a linear function such that
 kk xpxppZ ,...,110 ++= (16)
In each crisp state Sk the final output ZSk is calculated
according to Equations (14) and (15) above:

 | (17) |))(...)((|| 0

11
io

k
i
k

ii
SkSk RxAxAZZ ∧∧==

∑

∑
=

×=
=

||
||
i
SkSk

i
Sk

i
SkSk

Sk ZZ
ZZZ

Z (18)

The notion of composite output Z* is introduced to reflect
the contribution of the output values devised from the TS
linguistic models that are attached to crisp states to the
final output in a fuzzy state. Let the TSTFA be in fuzzy
state SFk, then

∑

++
=

i

k
i

Sp
k
pS

k

k

ZZ
Z

β
ββ ...11* (i =1,..., p) (19)

It is clear from Equation (19) that only those crisp states
that have greater than 0 degree of state membership in
fuzzy state SFk contribute to the final output.

Formally, a TSTFA automaton with p states is defined
by the following set of equations:
 (20) SkkFk gSS ,:
 (21)),(SFS ZXTSR =

 (22)

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p
p

p

k
p

k

p

G

ββ

ββ

ββ

...
......

...
......

...

1

1

11
1

 (23)),,(0* GRXTSZ SF=

 (24) ATAT XXifTRUEisX ≥
 (25))(0

FB XBX =
),,,(BTBByB yXWXfY = (26)

),,,(BTBBuB yXWXfU = (27)
TS stands for a reference to the Takagi-Sugeno model.
The detailed representation of Equation (21) is given by
Equation (16). The computational algorithm for Equation
(23) is given by Equations (17)–(19). XF

0 stands for
singleton fuzzy inputs. The block diagram of the TSTFA
automaton is shown in Fig. 1.
 One can notice that the B algorithm that maps changes
in a fuzzy input to changes of the states of a set of
Boolean input variables will be executed much faster for
the TSTFA than for the HFB-FSM. It is due to the fact
that there is no need to run a defuzzification step if the
fuzzy inputs are singletons.

4. Virtual TSTFA Automata for Supervisory Control

Most systems that are being used in industry contain a
large amount of knowledge including fault detection,
isolation and recovery (FDIR) algorithms. Contemporary
control systems employ the so-called agent architectures
[4]. A software agent can gather information about its
environment and can perform actions which change some
internal state, or representation of the agent such that
either a numerical, or a declared qualitative, or a
behavioral optimum is achieved. Our hypothesis is that a
real intelligent agent behavior requires a dynamic
architecture that can combine overall agent population
goal changes with architecture reconfiguration and with
agent model-based behavior. One of the key functions of
the agent is fault detection and assessment. If the agent
recognizes that a fault cannot be managed via the
application, it will assess if the fault is recoverable in
principle. A reconfigurable virtual TSTFA automaton will
be used to model the actual state of a hybrid system and to
accomplish this task.

The concept of the virtual fuzzy automaton was
introduced in [2]. A hardware accelerator for
reconfigurable fuzzy automata was proposed in [5]. Since
the state set of a complex system may consist of tens of
thousands of states, it would be impractical to design a
fuzzy automaton of that size. However, as it is shown in
[6], when the current goal state can be computed and all

- 402 -

possible disturbances are known, only a small partition of
the total state space is relevant to make a decision on the
next state along a goal path. A supervisory algorithm
monitoring the flow of states first determines a segment of
the transition graph (a cluster of relevant states) prior to
the decision on the next state transition. Then it creates an
instance of the virtual TSTFA to implement it. In other
words, it defines a TSTFA model of the relevant cluster of
states of the goal path.

The following information will be downloaded to the
reconfigurable TSTFA: the active sets of fuzzy, analog
with threshold, and Boolean inputs and fuzzy and two-
valued outputs, respectively, state membership function
degrees, the actual mapping scheme between fuzzy and
Boolean subintervals of the B algorithm, threshold values,
the initial state, the state transition graph along with the
conditions for state changes, the mapping function for
two-valued outputs, the Takagi-Sugeno linguistic models
and then the current status of all active input signals of
any kind. The TSTFA will then make a decision on the
transition to the next state, infer outputs (if needed), and
pass all these information back to the supervisory
algorithm. The configuration process will repeat each time
when a new instance of the TSTFA should be created to
track the current segment of the state graph.

5. Conclusions

 Dynamic software architecture is a key element that
allows a flexible mapping between informational
resources and the active components in industrial systems.
It can be implemented using software agents instead of
traditional communications channels. The software agents,
when enhanced with fuzzy automata, can perform a
learned, model-based reconfiguration that optimizes what
type of system behavior has priority in the current
situation. A Takagi-Sugeno type fuzzy automaton model is

introduced to support decision making with respect to
automatic recovery from faults.

References

[1] J.L. Grantner, G. Fodor, D. Driankov, “Hybrid Fuzzy-

Boolean Automata for Ontological Controllers”,
Proceedings of the 1998 IEEE World Congress on
Computational Intelligence, FUZZ-IEEE’98, Vol. I,
pp. 400-404, Anchorage, Alaska, May 4-9, 1998.

[2] J. L. Grantner, G. A. Fodor, D. Driankov, “The Virtual
Fuzzy State Machine Approach - A Domain-
Independent Fault Detection and Recovery Method
for Object-based Control Systems”, 18th International
Conference of the North American Fuzzy Information
Processing Society - NAFIPS'99, June 10-12, 1999,
New York, NY, Proceedings, pp. 158-162.

[3] T. Takagi and M. Sugeno, “Fuzzy identification of
systems and its application in modeling and control,”
IEEE Trans.System, Manand Cybernetics, vol. 15,
1985, pp. 116-132

[4] M. Knapik, J. Johnson, “Developing Intelligent
Agents for Distributed Systems, Exploring
Archtiecture, Technologies and Applications”,
McGraw-Hill, 1998.

[5] J. L. Grantner, P. A. Tamayo, R. Gottipati and G. A.
Fodor, “Reconfigurable Fuzzy Automaton for
Software Agents” , Proceedings of the BISCSE 2005
Conference, November 2-5, 2005, University of
California, Berkeley, Berkeley, CA, on CD

[6] G. A. Fodor, “Ontologically Controlled Autonomous
Systems: Principles, Operations and Architecture”,
Kluwer Academic Publishers, Boston / Dordrecht /
London 1998

Figure 1. TSTFA Automaton Block Diagram

- 403 -

	Navigation page
	Session at a glance
	Technical program

