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Abstract– Event-driven, large control systems often 

encounter unexpected events in an uncertain environment.  
Using a fuzzy automaton offers an effective approximation 
method to model continuous and discrete signals in a 
single theoretical framework. A Max-Min automaton can 
successfully model a cluster of relevant states when a 
decision is to be made on the next state of a goal path at 
the supervisory level.  However, to provide analytical 
proof for stability of a fuzzy controller a Takagi-Sugeno 
inference model is preferred. In this paper a TS-type fuzzy 
automaton is proposed.   
 
1. Introduction 

 
     Among the problems that characterize industrial 
process control innovation, and which are not domain-
related, some of the difficult ones are as follows: (a) how 
can new knowledge be introduced into a system, (b) how 
can the system activate stored domain knowledge in an 
autonomous way, (c) how can the knowledge be validated 
(or otherwise detected as inappropriate) and (d) how can 
the system recover if the new, activated knowledge (or the 
currently active knowledge) is not suitable to handle the 
situation at hand. 

With respect to problem (d): there is a need for 
computationally inexpensive fault detection and 
identification (FDI) algorithms, and automated recovery 
from faults. One aspect of FDI and automated recovery 
from faults is the evaluation of the state transitions 
between states of a large, complex system. It can be 
accomplished by focusing only on clusters of relevant 
states along the goal path to find a suitable next state. A 
reconfigurable virtual Max-Min fuzzy automaton (also 
referred to as the Hybrid Fuzzy-Boolean Finite State 
Machine, HFB-FSM) can be used to model those clusters 
of states. The other aspect of recovery is devising actuator 
values in the chosen new state that facilitate the recovery 
while keeping the system stable. A TS-type fuzzy 
automaton is proposed to achieve this goal.  

The rest of the paper is organized as follows: in Section 
2 the key properties of the HFB-FSM model are 
summarized. In Section 3 the definition of the proposed 
TS-type fuzzy automaton model (TSTFA) that has been 
developed from the HFB-FSM is given. In Section 4 the 
concept of the virtual TSTFA automaton is described. 
Conclusions are given in Section 5.  

2. Extended HFB-FSM Automaton Model 
 
The model of the Hybrid Fuzzy-Boolean Finite State 

machine was presented in [1]. It was extended in [2] to 
address the modeling requirements of a complex hybrid 
system at a more flexible level. The notion of this fuzzy 
automaton is based upon the premises as follows: the 
fuzzy automaton can stay in some crisp states 
simultaneously, to a certain degree in each. Those degrees    
are defined by a state membership function. For each 
fuzzy state there is just one dominant (crisp) state, though, 
for which the state membership is a 1 (full membership). Each dominant state is associated with a linguistic model 
for inference. For each fuzzy state a composite linguistic 
model is devised using the composition of the linguistic 
models of those contributing crisp states that has a greater 
than 0 state membership degree in that fuzzy state. The 
transitions between fuzzy states are based upon the 
transitions defined between their dominant crisp states.  

There is an underlying Boolean finite state machine to 
implement the fuzzy automaton. The states of this 
Boolean automaton are the dominant crisp states of the 
fuzzy automaton. The fuzzy inputs (and even fuzzy 
outputs, as an option) are mapped to sets of two-valued 
logic variables using the B algorithm [1]. The analog 
inputs with threshold also yield two-valued logic variables. 
In addition, the automaton may have two-valued inputs as 
well. All of these Boolean variables are used to devise the 
next states of the two-valued state variables of the 
underlying Boolean automaton. Two-valued outputs are 
devised using all types of inputs and the current dominant 
state. Fuzzy outputs are obtained through the 
compositional rule of inference. Defuzzified outputs are 
calculated by using a suitable defuzzification algorithm.  

Formally, a HFB-FSM automaton with p states is 
defined by the set of equations below: 
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In Equation (1) a fuzzy state is defined by a dominant 

crisp (Boolean) state along with a state membership 
function: SFk  stands for fuzzy state k, Sk represents crisp 
state k, and gSk  is the state membership function 
associated with Sk (k=1,…, p). G stands for the matrix of 
state membership functions. XF, WB, and XA stand for 
fuzzy, two-valued (Boolean) and analog inputs with 
associated XAT threshold values, respectively. A threshold 
comparator module compares the value of each analog 
signal with its associated threshold value to set the 
corresponding XT signal as true, or false. ZF, ZC, and UB 
stand for fuzzy, crisp (defuzzified), and two-valued 
(Boolean) outputs, respectively. 

In Equation (2) R* is the composite linguistic model, 
and  is the operator of composition in Equation (4). 
Each crisp state of the HFB-FSM is characterized by an 
aggregated, overall linguistic model, R

o

S or by a set of 
linguistic sub-models in the case of multiple-input-single-
output (MISO), and multiple-input-multiple-output 
(MIMO) systems. For each fuzzy state of the HFB-FSM 
model, a R* composite linguistic model is created from 
the finite set of RSi overall linguistic models (i=1,..,p). 

Let the HFB-FSM be in fuzzy state SFk, then 
       (11)           

where β
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1,…, βk

p  stand for the degrees of  state 
membership function gSk and RS1,…, RSp  are the 
aggregated linguistic models [1] in crisp states S1,…, Sp, 
respectively. In fact, Equation (11) is the computational 
algorithm for Equation (2). By modifying the β degrees of 
the state membership functions on-line, new R* composite 
linguistic models can be created under real-time 
conditions. The R* composite linguistic model is one of 
the key concepts in defining the HFB-FSM automaton: it 
decides how fuzzy outputs are inferred from the 
knowledge base in different fuzzy states. In other words, it 
reflects the fact of a fuzzy state transition by inferring 

different fuzzy outputs even for identical fuzzy inputs in 
two different states. 

:R

XB, ZB, YB, and yB stand for two-valued Boolean inputs, 
Boolean outputs (both devised from input and output 
fuzzy sets using the B algorithm) and next states and 
present states of the state variables, respectively. The ZC 
crisp values of the fuzzy outputs are obtained by 
evaluating a defuzzification strategy, DF.  

The transitions between active composite linguistic 
models are determined by the state transitions of the HFB-
FSM. The state transitions of the HFB-FSM are specified 
by means of a sequence of changes in the states of the 
fuzzy inputs (optionally, fuzzy outputs, too), of the analog 
inputs with threshold, as well as of the two-valued inputs. 
The changes in the states of the fuzzy inputs are mapped 
into a corresponding sequence of changes of Boolean 
input variable sets using the B algorithm. In this two-
valued domain, those changes are joined by the state 
changes of the two-valued inputs and the true/false logic 
values of the analog inputs with threshold. This combined 
Boolean input sequence specification is used to synthesize 
the crisp finite state machine section of the HFB-FSM. 
Hence, the HFB-FSM model allows the integration of 
fuzzy, analog and two-valued logic specifications to 
describe a system’s dynamic behavior.  

The integrated treatment of fuzzy, analog with 
threshold, and two-valued signals is of great importance 
for designing complex hybrid systems.  
 
3. TS-Type Fuzzy Automaton Model (TSTFA) 
 

The TSTFA model has been developed from the HFB-
FSM one such that the computational algorithm for the 
linguistic model of Equation (2) and the inference 
algorithm of Equation (4) are replaced by new equations 
to comply with the Takagi-Sugeno (TS) model of fuzzy 
systems [3]. Equation (5) is dropped because there is no 
need for it in a TS system. Equation (8) is also dropped 
because no fuzzy output is inferred from the linguistic 
model anymore. Equations (1), (3) and (6)-(10) remain in 
effect, however, Equation (9) is slightly revised due to the 
drop of ZB. 

In the TS model [3] the format of implications is 
proposed as follows: 

),...,(,..., 111 kkk xxgythenAisxAisxIf =  
and g is a linear function such that 
                             kk xpxppg ,...,110 ++=                                  (12) 
where A1,…, Ak are fuzzy sets, x1,…, xk are fuzzy inputs 
and output y is obtained as a crisp value. Suppose there 
are n implications Ri (i=1,…, n) of the above format. 
When the fuzzy inputs are given as singletons 

00
11 ...,, kk xxxx ==  

then the final output y is inferred in the following steps. 
  

1) For each implication Ri (I = 1,…, n) yi is calculated by 
the function gi in the consequence 
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2) The truth value of the proposition y=yi is calculated by 
the equation 
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where |*| means the truth value of proposition *, ∧ stands 
for min operation and A(x0) stands for the grade of 
membership of x0 in fuzzy set A. For simplicity, |Ri| = 1is 
assumed. 
 
3) The final output y inferred from n implications is given 
as the average of all yi with the weights |y = yi|: 
 

                     
∑

∑
=

×=
=

||
||

i

ii

yy
yyy

y                           (15) 

In the TSTFA model the Takagi-Sugeno version of the 
IF THEN rules is adopted as it is given in Equation (12). 
The only change in the notation is that Z is used for output 
rather than y.  

),...,(,...,: 111 kkk xxgZthenAisxAisxIfR =  
and g is a linear function such that 
                                                              kk xpxppZ ,...,110 ++= (16) 
In each crisp state Sk the final output ZSk is calculated 
according to Equations (14) and (15) above: 
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The notion of composite output Z* is introduced to reflect 
the contribution of the output values devised from the TS 
linguistic models that are attached to crisp states to the 
final output in a fuzzy state. Let the TSTFA be in fuzzy 
state SFk, then 
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It is clear from Equation (19) that only those crisp states 
that have greater than 0 degree of state membership in 
fuzzy state SFk contribute to the final output.  

Formally, a TSTFA automaton with p states is defined 
by the following set of equations: 
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TS stands for a reference to the Takagi-Sugeno model. 
The detailed representation of Equation (21) is given by 
Equation (16). The computational algorithm for Equation 
(23) is given by Equations (17)–(19). XF

0 stands for 
singleton fuzzy inputs. The block diagram of the TSTFA 
automaton is shown in Fig. 1. 
    One can notice that the B algorithm that maps changes 
in a fuzzy input to changes of the states of a set of 
Boolean input variables will be executed much faster for 
the TSTFA than for the HFB-FSM. It is due to the fact 
that there is no need to run a defuzzification step if the 
fuzzy inputs are singletons. 
 
4. Virtual TSTFA Automata for Supervisory Control 
 

Most systems that are being used in industry contain a 
large amount of knowledge including fault detection, 
isolation and recovery (FDIR) algorithms. Contemporary 
control systems employ the so-called agent architectures 
[4]. A software agent can gather information about its 
environment and can perform actions which change some 
internal state, or representation of the agent such that 
either a numerical, or a declared qualitative, or a 
behavioral optimum is achieved. Our hypothesis is that a 
real intelligent agent behavior requires a dynamic 
architecture that can combine overall agent population 
goal changes with architecture reconfiguration and with 
agent model-based behavior. One of the key functions of 
the agent is fault detection and assessment. If the agent 
recognizes that a fault cannot be managed via the 
application, it will assess if the fault is recoverable in 
principle. A reconfigurable virtual TSTFA automaton will 
be used to model the actual state of a hybrid system and to 
accomplish this task. 

The concept of the virtual fuzzy automaton was 
introduced in [2]. A hardware accelerator for 
reconfigurable fuzzy automata was proposed in [5]. Since 
the state set of a complex system may consist of tens of 
thousands of states, it would be impractical to design a 
fuzzy automaton of that size. However, as it is shown in 
[6], when the current goal state can be computed and all 
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possible disturbances are known, only a small partition of 
the total state space is relevant to make a decision on the 
next state along a goal path. A supervisory algorithm 
monitoring the flow of states first determines a segment of 
the transition graph (a cluster of relevant states) prior to 
the decision on the next state transition. Then it creates an 
instance of the virtual TSTFA to implement it. In other 
words, it defines a TSTFA model of the relevant cluster of 
states of the goal path.  

The following information will be downloaded to the 
reconfigurable TSTFA: the active sets of fuzzy, analog 
with threshold, and Boolean inputs and fuzzy and two-
valued outputs, respectively, state membership function 
degrees, the actual mapping scheme between fuzzy and 
Boolean subintervals of the B algorithm, threshold values, 
the initial state, the state transition graph along with the 
conditions for state changes, the mapping function for 
two-valued outputs, the Takagi-Sugeno linguistic models 
and then the current status of all active input signals of 
any kind. The TSTFA will then make a decision on the 
transition to the next state, infer outputs (if needed), and 
pass all these information back to the supervisory 
algorithm. The configuration process will repeat each time 
when a new instance of the TSTFA should be created to 
track the current segment of the state graph.  
 
5. Conclusions 
 
    Dynamic software architecture is a key element that 
allows a flexible mapping between informational 
resources and the active components in industrial systems. 
It can be implemented using software agents instead of 
traditional communications channels. The software agents, 
when enhanced with fuzzy automata, can perform a 
learned, model-based reconfiguration that optimizes what 
type of system behavior has priority in the current 
situation. A Takagi-Sugeno type fuzzy automaton model is 

introduced to support decision making with respect to 
automatic recovery from faults.  
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Figure 1. TSTFA Automaton Block Diagram
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