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Abstract—We have developed a chaos-based cryp-
tographic method using the augmented Lorenz equa-
tions. In our method, the secret key is given as an
N -dimensional real diagonal matrix that specifies the
augmented Lorenz equations, being assumed to be
shared between legitimate users using a quantum key
distribution. We apply our method to speech encryp-
tion and evaluate its security on the basis of the degree
of visible determinism in chaotic sequences as pseudo-
random numbers generated by the augmented Lorenz
equations.

1. Introduction

The augmented Lorenz model is a system of 2N +1-
dimensional ordinary differential equations as a nondi-
mensionalized expression of the equations of motion
for a chaotic gas turbine [1]. This dynamical model
is represented as a star network of N Lorenz subsys-
tems sharing the variable X as the central node and
can simulate the motion of a convective flow in tur-
bulent Rayleigh-Bénard convection at high Rayleigh
numbers exceeding 106 [2]–[4], in the sense that it can
reproduce the statistical properties of the velocity field
in an actual turbulent convective flow.

We recently have applied the augmented Lorenz
model to chaotic cryptography [5]. In our method,
the sender and receiver of a message, called Alice and
Bob, respectively, have identical augmented Lorenz os-
cillators specified by a common N -dimensional real di-
agonal matrix, denoted as M, in their communication
systems. M works as a secret key, i.e., a symmetric
key, which is assumed to be securely exchanged be-
tween Alice and Bob using a quantum key distribu-
tion (QKD), e.g., the Bennett-Brassard 1984 (BB84)
protocol [6]–[9]. Within the limit of quantum physics,
QKD guarantees absolutely secure distribution of a se-
cret key that can be used as pseudorandom numbers
for message encryption. However, this does not mean
that the key securely distributed by QKD is always
sufficiently secure when it is used as pseudorandom
numbers for message encryption.

To circumvent this problem, we apply QKD to ex-
change M as a secret key and use the chaotic sequence
generated by the augmented Lorenz oscillators speci-
fied by M as the pseudorandom numbers. Here, we set

the dimension N of M to an appropriate number such
that the secret-key space has a large size but it takes a
short time to distribute M using QKD. For instance,
N is set to N = 101. Then, the size of the secret-key
space amounts to 2N−1 = 2100 ∼ O(1030), which pro-
hibits an eavesdropper (a hostile attacker), called Eve,
to identify M by a brute force attack. Thus, Alice and
Bob can make a long sequence of pseudorandom num-
bers, which is usually much longer than N , and can
practically use our cryptosystem as a one-time pad ci-
pher.

In this paper, we evaluate the degree of random-
ness of chaotic time series generated by the augmented
Lorenz equations and show how our cryptographic
method would be effective for speech encryption us-
ing the time series as a masking signal.

2. Augmented Lorenz Model and Chaotic
Cryptography

The augmented Lorenz equations as a dimensionless
dynamical model are defined as

dX

dτ
= σ

[
tr

(
(M−1)2Y

) − X
]

, (1)

dY
dτ

= RX − MZX − Y , (2)

dZ
dτ

= MYX − Z , (3)

R = R0M2ΦW ,

where X is a scalar variable, Y and Z are N ×N diag-
onal matrices whose diagonal components are denoted
as Yn and Zn with n running from 1 to N , respectively,
τ is dimensionless time, tr(·) denotes the diagonal sum
of a matrix, σ and R0 are bifurcation parameters cor-
responding to the Prandtl and Rayleigh numbers, re-
spectively. The matrix R is defined using

M = diag(M1, M2, . . . , MN ) , (4)
W = diag(sinφ, sin M2φ, . . . , sin MNφ) , (5)

Φ = diag
(
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2
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1
Mn − 1

sin(Mn − 1)φ − 1
Mn + 1
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1
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MN + 1

sin(MN + 1)φ
)

(6)
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where φ is a bifurcation parameter.
In this study, the bifurcation parameters σ, R0, and

φ are set to σ = 25, R0 = 3185, and φ = 0.36 [rad],
respectively. These parameter settings were confirmed
to yield chaos [5].

In our cryptographic method, Alice and Bob share
M as a secret key, where M1 is always set to M1 = 1
and Mn with n running from 2 to N randomly takes
n or n + 1/2. M can be mapped to the corresponding
binary secret key Q = diag(Q1, . . . , QN ) accord-
ing to Qn = 0 if Mn = n and Qn = 1 otherwise for
n = 1, . . . , N . This procedure can be reversed. In-
deed, when sharing M, Alice and Bob first exchange
N binary numbers Qn using a QKD and transform Q
into M by reversing the rule mentioned above.

Alice and Bob perform speech encryption and de-
cryption with the following procedure. The bifurca-
tion parameters σ, R0, and φ, the initial values of X,
Y, and Z, and the algorithm for numerical integra-
tion of the augmented Lorenz equations as well as the
time width Δt and the initial truncation time T0 are
all opened to all users as public keys. Only M is used
as the secret key shared between Alice and Bob.

Alice records a speech signal as a time series in the
form of text, denoted as m(t). Here, t = iδt with non-
negative integers i = 1, . . . , L and δt represents the
sampling time of the speech with a real physical di-
mension. Alice yields a chaotic time series X(τ) (i.e.,
X(i)) with dimensionless time τ = iΔt (i = 1, . . . , L)
by running her augmented Lorenz oscillator specified
by M. She obtains a pseudorandom sequence of X(τ ′)
with τ ′ = iT (i = 1, . . . , LΔt/T ) and an appropri-
ately chosen sampling time interval T . She transforms
the pseudorandom sequence into X(t) as a function of
t with the real physical dimension using αt = T , where
α [s−1] is an appropriately chosen time coefficient. Fi-
nally, she performs speech encryption by adding X(t)
to m(t) and sends the ciphertext m + X to Bob.

Bob receives m + X and yields X by running his
augmented Lorenz oscillator identical to that of Alice
with T , δt and α shared between Alice and Bob. Thus,
he decrypts the ciphertext by subtracting X from m+
X.

3. Numerical Results and Discussion

3.1. Time Series Analysis

Randomness in the time series of X(i) is evaluated
in terms of the degree of visible determinism using the
algorithm introduced by Wayland et al. [10]. Their
method is briefly described below. From a time se-
ries, we construct d-dimensional embedding vectors
denoted as xi. Then, a vector xp(0) is randomly chosen
and its K nearest neighbors xp(k) (k = 1, . . . , K)
are found. Images of xp(k), denoted as xp(k)+T0 for

k = 0, . . . , K, are generated under an appropriate
time interval T0. Finally, the diversity in the direc-
tions of neighboring embedding vectors is estimated
in terms of the translation error Etrans defined by

Etrans =
1

K + 1

K∑
k=0

| vp(k) − v̄ |2
| v̄ |2 , (7)

v̄ =
1

K + 1

K∑
k=0

vp(k) , (8)

vp(k) = xp(k)+T0 − xp(k) . (9)

The smaller Etrans indicates the more visible deter-
minism in the time series. To reduce the statistical
error in estimates of Etrans, we take the mean over W
medians of Etrans for W sets of P randomly chosen
xp(0).

We ran the augmented Lorenz equations with N =
101 at a time width of 2.0×10−7. The initial conditions
of X, Y, and Z were given as pseudorandom numbers
subject to the standard normal distribution. The key
matrix M was given by randomly assigning n or n+1/2
to Mn for N = 2, . . . , N . Initial 250000 data points
of the time series were discarded to eliminate initial
transient part of the series.

Figures 1(a) and (b) show part of the time series
X(τ) (i.e., X(i)) with T = 100 and T = 10000, re-
spectively (α = 1000). Figure 2 shows estimates of
Etrans, where L = 1000, T0 = 5, W = 10, and
P = 51. The determinism underlying the time se-
ries with T = 10000 is much less visible than that
with T = 100, and the estimated translation errors are
close to those of uncorrelated white noise [11] when
T = 10000, although the time series have been gen-
erated by the augmented Lorenz equations as a fully
deterministic dynamical model. These observation in-
dicate that the time series with T = 10000 is useful as
a masking signal.

3.2. Message Encryption

We used speech data comprising the words “Yes, we
can.” as a plaintext, The speech was spoken by one of
the authors (K. C.) and recorded using a digital voice
acquisition system with a signal quantization level of
16 [bit] and a sampling frequency of 44.1 [kHz]. The
speech data were transformed into a plaintext m(t)
consisting of the numbers representing the air-pressure
intensities. The time series X(τ) with T = 10000 was
transformed with α = 1000 into a masking signal X(t).
Message encryption was performed by adding X(t) to
m(t).

Figures 3(a) and (b) show the plaintext m and the
ciphertext m+X, respectively. It can be seen that the
plaintext is entirely masked by the chaotic time series.
No peaks characteristic of the plaintext could be rec-
ognized in the power spectrum of the ciphertext. The
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Figure 1: Time series X(τ) under sampling time in-
tervals of (a) T = 100 and (b) T = 10000.

decrypted message was confirmed to be identical to the
original plaintext. Thus, our cryptographic method is
shown to be applicable to encrypting speech data.

4. Conclusions

We have estimated the degree of visible determinism
using the diagnostic algorithm by Wayland et al. for
the time series X with time intervals of T = 100 and
T = 10000. It has been shown that the time interval
T = 10000 generates a chaotic time series, the under-
lying determinism of which is as invisible as those of
uncorrelated Gaussian stochastic processes. Such ran-
domness suffices for encryption of speech data. The
size of the secret-key space of M with N = 101
amounts to 2100, which is prohibitively large for Eve
to break the key by a brute force attack and hence
enables us to practically use our method as a one-time
pad cryptography. The application of our method to
encrypting a binary-coded plaintext is an open ques-
tion to be investigated in future studies.
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Figure 2: Estimates of the translation error as a func-
tion of embedding dimension for the time series with
T = 100 (×) and T = 10000 (+).
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