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Abstract—A new fuzzy c-means algorithms for
data with tolerance is proposed by introducing a
penalty term in feature space. Its idea is derived from
the support vector machine introducing a penalty term
for ”soft margin” in feature space. In the proposed
method, the data is allowed to move for minimizing
the corresponding objective function but this move-
ness is controlled by the penalty term.

First, an optimization problem is shown by in-
troducing tolerance with conventional fuzzy c-means
algorithm in feature space. Second, Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem
is considered. Third, an iterative algorithm is pro-
posed by re-expressing the KKT conditions using ker-
nel trick. Fourth, another iterative algorithm is pro-
posed for fuzzy classification function, which shows
how prototypical an arbitrary point in the data space
is to the obtained each cluster by extending the mem-
bership to the whole space. Last, some numerical ex-
amples are shown.

1. Introduction

Fuzzy c-means (FCM) [1] is one of the well-known
fuzzy clusterings and many FCM variants have been
proposed after FCM. FCM is pointed out that it is
difficult to classify data with nonlinear borders be-
cause FCM uses squared distance between each da-
tum and each cluster center for its dissimilarity. In
order to solve this problem of conventional FCM, a
new algorithm [2], called K-sFCM, has been proposed
using nonlinear transformation from the original pat-
tern space into a higher dimensional feature space with
kernel function in Support Vector Machine (SVM) [3].

Soft margin in SVM helps the incompleteness of
nonlinearity in the introduced kernel by allowing mis-
labeling [4]. K-sFCM also has the possibility to mis-
classify because the nonlinearity of the introduced ker-
nel is incomplete. Taking account into this analogy,
”tolerance” for data, which allows to move data in a
region, was considered in K-sFCM [5].

In this paper, another type of tolerance for data
is introduced with K-sFCM, which does not limit
the maximal tolerance like the already proposed
method [5], but introduce a penalty term for toler-
ance with the objective function of K-sFCM like soft
margin method in SVM.

The contents of this paper are the followings. In
the second section, we define some notation. In the
third section, our new algorithm is proposed. In the
forth section, we show some numerical examples of our

proposed algorithm. In the last section, we conclude
this paper.

2. Preliminaries

In this section, we define some notation.
The data set x = {xi | xi ∈ Rp, i ∈ {1, . . . , N}} is

given. The membership by which xi belongs to the
j-th cluster is denoted by ui,j (i ∈ {1, · · · , N}, j ∈
{1, · · · , C}) and the set of ui,j is denoted by u ∈ RN×C

called the partition matrix. The constraint for u is

C∑

j=1

ui,j = 1 (0 ≤ ui,j ≤ 1).

A high-dimensional feature space used in SVM is
denoted by H, whereas the original space Rp is called
data space. H may be an infinite-dimensional metric
space. Let the inner product denoted by 〈·, ·〉. The
norm of H for an element g ∈ H is given by

‖g‖2
H = 〈g, g〉. (1)

A transformation Φ : Rp → H is employed whereby
xi is mapped into Φ(xi). Explicit representation of
Φ(x) is not usable in general but the inner product
〈Φ(x),Φ(y)〉 can be expressed by a kernel function

K(x, y) = 〈Φ(x),Φ(y)〉. (2)

A representative kernel function is the radial basis
function (RBF) kernel described as

K(x, y) = exp(−σ−2‖x − y‖2
2) (3)

with a positive parameter σ. The cluster center set in
H is denoted by W = {Wj | Wj ∈ H, j ∈ {1, . . . , C}}.
The tolerance for the data x is denoted by E = {Ei |
Ei ∈ H, i ∈ {1, . . . , N}}. The maximum tolerance is
denoted by κ = {κi | κi ∈ R+, i ∈ {1, . . . , N}}.

In [5], an iterative algorithm derived from the stan-
dard FCM are considered on the basis of the following
optimization problem:

minimize
u,W,E

Jm,k,t(u,W,E) (4)

under
C∑

j=1

ui,j = 1, ‖Ei‖ ≤ κ2
i , (5)
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where

Jm,k,t(u,W,E) =
N∑

i=1

C∑

j=1

um
i,j‖Φ(xi) + E − Wj‖2

H.

(6)

3. K-sFCM for Data with Tolerance introduc-
ing penalty term

In this section, a new FCM algorithm is proposed
by introducing penalty term with K-sFCM. First, the
optimization problem is described and its KKT con-
ditions are led. Second, the KKT conditions are re-
formalized and the iterative algorithm is proposed.
Third, another iterative algorithm is also proposed in
order to obtain the values of fuzzy classification func-
tion.

For x, u, E, W , we consider the following optimiza-
tion problem:

minimize
u,E,W

Jm,k,at(u,E,W ) under
C∑

j=1

ui,j = 1, (7)

where

Jm,k,at(u,E, W ) =
N∑

i=1

C∑

j=1

um
i,j‖Φ(xi) + Ei − Wj‖2

H +
N∑

i=1

βi‖Ei‖.

(8)

Its Lagrange function Lm,k,at(u,E,W ) is as below:

Lm,k,t(u,E, W ) =
N∑

i=1

C∑

j=1

um
i,j‖Φ(xi) + Ei − Wj‖2

H

+
N∑

i=1

γi




C∑

j=1

ui,j − 1


 +

N∑

i=1

βi‖Ei‖,

(9)

where γ = (γ1, . . . , γN ) is KKT vector. From KKT
conditions and kernel trick, we obtain the following
iterative algorithm:
Algorithm 1 (K-sFCM-AT)

Step 1 Give the value of m and κ. Select a kernel
function K : Rp×Rp → R. Set the initial cluster
centers vj (j ∈ {1, · · · , C}) in Rp.

Step 2 Calculate Y
(0)
i,j , Z

(0)

j,j̃
and d

(0)
i,j such that

Y
(0)
i,j =K(xi, v

(0)
j ), Z

(0)

j,j̃
= K(v(0)

j , v
(0)

j̃
), (10)

d
(0)
i,j =K(xi, xi) − 2Y

(0)
i,j + Z

(0)
j,j . (11)

Set t be 0.

Step 3 Calculate u
(t)
i,j , U

(t)
j , µ

(t)
i , α

(t+1)
i , Y

(t+1)
i,j ,

Z
(t+1)

j,j̃
and d

(t+1)
i,j such that

u
(t)
i,j = 1/

C∑

k=1

(
d
(t)
i,j

d
(t)
i,k

)1/(m−1)

, U
(t)
j =

N∑

i=1

u
(t)
i,j

m
,

(12)

µ
(t)
i =

C∑

j=1

u
(t)
i,j

m
, α

(t+1)
i = −1/(µ(t)

i + βi) (13)

Y
(t+1)
i,j =U

(t+1)
j

−1
N∑

k=1

u
(t+1)
k,j

m

·

[(
1 − α

(t+1)
k µ

(t+1)
k

)
K(xi, xk)

+ α
(t+1)
k

C∑

`=1

u
(t+1)
k,`

m
Y

(t)
i,`

]
, (14)

Z
(t+1)

j,j̃
=U

(t+1)
j

−1
U

(t+1)

j̃

−1
N∑

k=1

N∑

`=1

u
(t+1)
k,j

m
u

(t+1)

`,j̃

m

·

[(
1 − α

(t+1)
k µ

(t+1)
k

)(
1 − α

(t+1)
` µ

(t+1)
`

)

· K(xk, x`)

+
(
1 − α

(t+1)
k µ

(t+1)
k

)
α

(t+1)
`

C∑

r=1

u
(t+1)
`,r

m
Y

(t+1)
k,r

+ α
(t+1)
k

(
1 − α

(t+1)
` µ

(t+1)
`

) C∑

q=1

u
(t+1)
k,q

m
Y

(t+1)
`,q

+ α
(t+1)
k α

(t+1)
`

C∑

q=1

C∑

r=1

u
(t+1)
k,q

m
u

(t+1)
`,r

m
Z(t)

q,r

]
,

(15)

d
(t+1)
i,j =

(
1 − α

(t+1)
i µ

(t+1)
i

)2

K(xi, xi)

+ 2
(
1 − α

(t+1)
i µ

(t+1)
i

)

·
C∑

k=1

(
α

(t+1)
i u

(t+1)
i,k

m
− δk,j

)
Y

(t+1)
i,k

+
C∑

k=1

C∑

`=1

(
α

(t+1)
i u

(t+1)
i,k

m
− δk,j

)

·
(
α

(t+1)
i u

(t+1)
i,`

m
− δ`,j

)
Z

(t)
k,`. (16)

Step 4 Check the stopping criterion. If the criterion
is not satisfied, go back to Step 3.

Fuzzy classification function (FCF) value of K-sFCM-
AT for a brand-new data x̃ ∈ Rp is obtained by the
following algorithm:

Algorithm 2 (FCF for K-sFCM-AT)

Step 1 Inherit m, C, Z, K from Algorithm 1. Give
the maximal tolerance value of κ̃ for x̃. Set aj,j̃
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and bj such that

aj,j̃ =δj,j̃ − U−1
j

N∑

k

um
k,jαkum

k,j̃
, (17)

bj =U−1
j

N∑

k=1

um
k,j(1 − αkµk)K(x, xk) (18)

and solve Ay = b. Calculate d̃j such that

d̃j = K(x̃, x̃) − 2yj + Zj,j . (19)

Step 2 Calculate ũj, µ̃j, α̃ and d̃j such that

ũj =1/

C∑

k=1

(
d̃j

d̃k

) 1
m−1

, µ̃ =
C∑

j=1

ũm
j (20)

α̃ = − 1/(µ̃ + β̃) (21)

d̃j =(1 − α̃µ̃)2K(x̃, x̃) + 2(1 − α̃µ̃)
C∑

k=1

(α̃ũk − δk,j)yk

+
C∑

k=1

C∑

`=1

(α̃ũk − δk,j)(α̃ũ` − δ`,j)Zk,`.

(22)

Step 3 Check the stopping criterion. If the criterion
is satisfied, ũj is the fuzzy classification function
value with respect to x̃. Otherwise, go back to
Step 2.

4. Numerical Examples

In this section, we show some examples of the pro-
posed algorithm 1 and 2. In each example, after ten
trials for Algorithm 1 with different initial cluster cen-
ters are tested and the solution with the minimal ob-
jective function value is selected, Algorithm 2 is ap-
plied. For all examples, we employ RBF kernel

K(x, y) = exp(−σ2‖x − y‖2
2). (23)

The first example is classifying the data shown in
Fig. 1 into a ring shaped cluster and a ball one. We
fix σ2 = 0.1 and m = 2, and test two different values
of βi ∈ {0, 5}. The cases of βi ∈ {0, 0.5} produce the
correctly classified results shown in Fig. 2 and Fig. 3,
respectively. From these figures, we can find that the
larger value of βi, the larger membership for the cluster
#1 and the larger size of the range for the cluster #1.

The second example is classifying the data shown
in Fig. 4 into two crescents shaped clusters. We fix
σ2 = 0.1 and m = 2 and test two different values of
βi ∈ {0, 2}. While the case of βi = 0 fails shown in
Fig. 5, the cases of βi = 2 produce the correct result
shown in Fig. 6. From these figures, we can find that
the tolerance helps the incomplete nonlinearity of the
introduced kernel and makes the classification border
bended adequately.

5. Conclusion

In this paper, we proposed the fuzzy classification
function of the standard fuzzy c-means for data with
tolerance using kernel functions, which is another type
of tolerance than the already proposed one [5]. First, a
certain optimization problem was shown for the fuzzy
classification function for fuzzy c-means with penalty
term of tolerance for data using kernel functions. Sec-
ond, Karush-Kuhn-Tucker conditions of the objective
function was considered, and the iterative algorithm
was proposed for the optimization problem. Another
iterative algorithm for fuzzy classification function was
also proposed. Last, some numerical examples were
shown.

As future works, we will compare the proposed
method with the already proposed method [5] from
the view point of classification performance.

Note that the fuzzy classification function of K-
eFCM-T can be also calculated by similar iterative
algorithm, though it is omitted by the sake of pages.
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Figure 1: Ring and Ball Data
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Figure 2: Successful Classification Result of Fig. 1 by
K-sFCM-AT 1 with σ2 = 0.1, m = 2 and βi = 0, and
its fuzzy classification function surface by Algorithm 2
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Figure 3: Successful Classification Result of Fig. 1 by
K-sFCM-AT 1 with σ2 = 0.1, m = 2 and βi = 5, and
its fuzzy classification function surface by Algorithm 2
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Figure 4: Crescents Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x 2

x1

Cluster #1
Cluster #2

0.6
0.5
0.4

Figure 5: Misclassification Result of Fig. 4 by K-
sFCM-AT 1 with σ2 = 0.1, m = 2 and βi = 0, and its
fuzzy classification function surface by Algorithm 2
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Figure 6: Successful Classification Result of Fig. 4 by
K-sFCM-AT 1 with σ2 = 0.1, m = 2 and βi = 2, and
its fuzzy classification function surface by Algorithm 2
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