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Abstract—The cycle shuffled surrogate algorithm pro-
vides a straightforward method to randomise cyclic time
series. This randomisation can then be employed as a form
of Monte-Carlo hypothesis testing — do the randomised
realisations differ, statistically, from the original? If they
do, then one may conclude (with some additional caveats)
that the original data included deterministic inter-cycle dy-
namics: deterministic chaos, for example. In this commu-
nication we will re-examine this algorithm, point to several
technical issues that may arise and discuss suitable pallia-
tives.

1. Introduction

When chaotic dynamics and nonlinear time series anal-
ysis first became en vogue [12], evidence of chaos arose in
a wide range of settings (for example [13]). However, the
primary indicators of chaos; positive Lyapunov exponents
[19] and fractional correlation dimension [2, 3]; were prob-
lematic for several reasons. Some of those problems were
technical and address with later, improved, algorithms [12].
However, another statistical problem remained: to say with
confidence that the observed data represented something
“‘interesting” one needed a statistical model of the appro-
priate “boring” alternatives. For random looking signals,
the method of surrogate data came to the rescue [17].

Surrogate data methods provide a framework with which
to test whether observed data is consistent with a specific
hypothesis by generating an ensemble of realisations —-
the surrogates — that are both “like” the original data and
also consistent with the hypothesis under consideration.
For example, to test the hypothesis that observed data is in-
dependent and identically distributed noise, one can gener-
ate surrogates by shuffling the order of observations in the
original time series. Other hypotheses posited by Theiler
[17] tested for correlated noise by shuffling the phases of
the Fourier transform. These algorithms worked well and
spawned a cottage industry in developing increasingly eso-
teric surrogate generation algorithms (the contributions of
the current first author include [8, 9, 10, 11, 7, 5]). How-
ever, problems remain in those instances where the surro-
gate simply looked wrong. In particular, if the data had
cyclic oscillations then most of these methods would lead
to rejection of the hypothesis under consideration simply

because the surrogates look different to the data.
Theiler and Rapp [18] initially demonstrated a solution

to this problem in 1996 — the cycle surrogate algorithm.
The algorithm is very simple and intuitive: first break the
time series signal into cycles and then shuffle the order of
those cycles before reassembling the signal. Long term de-
terministic dynamics would be destroyed and one could test
the hypothesis of a noisy periodic orbit. The method was
originally demonstrated for, and shown to work well with,
strongly cyclic time series of epileptic electroencephalo-
gram recordings. The mechanistic shuffling posed some
conceptual problems for the statement of the null hypothe-
sis and did not always work equally smoothly for all time
series. Some finesse was required and an embedding based
[16] alternative [15, 14] was proposed to circumvent these
issues.

However, the cycle shuffle algorithm remains, and re-
mains intuitive and attractive. Unfortunately, it does still
suffer from some issues, including problems of aliasing
which have previously not been properly recognised. In
the following sections we catalogue these problems, and
propose solutions.

2. Corrected cycle shuffled surrogates

The cycle shuffle surrogate algorithm was briefly de-
scribed in the introduction and is illustrated in Fig. 1. Fig-
ure 1 depicts a typical experimental time series — in this
case a sound recording of a constant tone. The sound is
produced by the vibration of an air column in a woodwind
instrument with air intake periodical occluded by a vibrat-
ing reed. The initial and final phase of the sound have been
removed and depicted in Fig. 1 is the presumably “sta-
tionary” sustained phase. As the sound is a single musical
tone it is approximately periodic and even typically char-
acterised by its Fourier spectrum. Just as with vibrating
strings [6, 4] it is natural to ask whether this recording is
the output of a chaotic dynamical system. To test this hy-
pothesis we can estimate Lyapunov exponents, correlation
dimension and build nonlinear models. However, to ensure
that the results we obtain are not artefacts of some sim-
pler system, surrogate data should be generated and also
tested alongside the original. The challenge is to generate
surrogate data that looks like this experimental recording
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Figure 1: The cycle shuffled surrogate method. Two
views of the same time series (a sound recording from a
standard B[ clarinet intoning the note A5, toward the up-
per end of the clarino register, sustain only — attack and
decay removed). Peaks and troughs are identified (using a
sliding window method) to identify individual cycles of the
recording. These are then separated and then pieced back
together in a random order in Fig. 2.

but that contains no long-term (inter-cycle) determinism.
Hence, cycle shuffled surrogates are applied to the cyclic
decomposition of Fig. 1.

In Fig. 1 we have identified the location of each peak and
trough of each cycle. While there are also issues associated
with doing this automatically, we have manually checked
that the estimates in this case are accurate. From these in-
dividual cycles, we can then break the time series into these
cycles, re-arrange and re-order, and re-assemble — shift-
ing cycles vertically to ensure continuity. Unfortunately,
ensuring continuity introduces long-term non-stationarity
through correlations across the peaks or troughs. In each
sub-panel of Fig. 2 this non-stationarity is evident.

In would be trivial to detect statistical difference between
the time series in Fig. 1 and a random ensemble like those
evident in Fig 2. However, it would be erroneous to con-
clude that the original data contains long term deterministic
dynamics — the non-stationarity introduced in these surro-
gates may merely be due to correlations across the break-
points. The problem is that when the surrogates are re-
assembled each individual cycle is moved vertically to pre-
serve continuity. Unfortunately, this amounts to a shuffling
of the difference between the trough locations — and even
if this is a random process it is not necessary mean-zero and
so the shuffled version is not necessarily stationary. The so-
lution that we are exploring is to perform a linear dilation,
affine transformation or rotation (one is free to choose from
amongst the various alternatives — each only needing an
additional free parameter to enforce stationarity) on each
cycle in addition to the vertical translation — this ensures
that not only are the break points continuous, but that the
location of each trough is fixed between the surrogates.

Let {yt}
N
t=1 be the time series and suppose that we iden-

tify breakpoints {ti}ki=1 (ti < ti+1 and ti ∈ [1,N]∩Z) splitting
the time series into k− 1 cycles. Without loss of generality,

Figure 2: Naı̈ve cycle shuffled surrogates for experimen-
tal data. Three standard cycle shuffled surrogates are de-
picted for the time series in Fig. 1. In the upper panel cycles
are split at the peak; in the middle panel at the mid-point of
each cycle; and, in the lower panel at the trough. In each
case the act of piecing these back together has introduced
non-stationarity not present in the original. One could triv-
ially conclude that the null hypothesis is not true, however,
is this evidence of nonlinear determinism?

suppose t1 = 1 and tk = N (otherwise, we keep whatever
occurs before t1 and after tk fixed). A cycle shuffle surro-
gate is generated by constructing the sequence of pairs

{(t1, t2), (t2, t3), (t3, t4) . . . , (tk−1, tk)}

and then reordering those pairs

{(tπ(1), tπ(1)+1), (tπ(2), tπ(2)+1), (tπ(3), tπ(3)+1) . . . ,
(tπ(k−1), tπ(k−1)+1)}

where π is a permutation of the integers 1, 2, 3, . . . , k − 1.
The surrogate zt is then constructed iteratively from the seg-
ments

{ytπ(i) , . . . , ytπ(i)+1 }.

Let
Ci = {ytπ(i) , . . . , ytπ(i)+1 }

denote the i-th such segment. For each segment we perform
a translation correction to obtain C̃i = Ci−ytπ(i−1)+1 to ensure
continuity, and then zt is the concatenation of these cor-
rected segments zt := {C̃1|C̃2| · · · |C̃k}. This is the process
depicted in Fig. 2, and it is clear that preserving continuity
is at the expense of stationarity.

To preserve both continuity and stationarity we must
replace the correction operation C̃ with a more complex
translation and possibly either rotation or dilation to ensure
that both endpoints are preserved. Whereas C̃i translates
Ci that the first point of C̃i is identical to the successor of
the last point of ˜Ci − 1 we must also ensure that the final
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Figure 3: Naı̈ve cycle shuffled surrogates for an exactly
periodic time series. Depicted as a solid cyan line is the
time series, sampled at the sampling times of the red dots.
Clearly there is an aliasing effect due to sampling at a fre-
quency not exactly divisible by the period. When the cycle
surrogate is constructed (with any of the methods described
in this communication) that long-term aliasing pattern is
destroyed — the lower panel.

points line up as well. This introduces a single additional
degree of freedom — we can either parameterise that with
a dilation (scaling C̃i by a factor λ), affine transformation
(y = mx + b) or a rotation (through an angle θ). Either
approach will ensure that the sequence of breakpoints are
preserved yti ≡ zti for all i and hence the surrogates are
stationary in the same sense as the original data. The ran-
domisation achieved by shuffling the data is then a genuine
randomisation of the shape of the individual cycles and a
proper test of no inter-cycle determinism.

3. Aliasing

Implementing this solution works well for a wide range
of experimental time series — including those depicted
here. But it is worth noting that it does present new chal-
lenges. Consider strictly periodic orbits of a linear or non-
linear system and require only that the period is not exactly
divisible by the sampling time interval. A typical such time
series is depicted in the upper panel of Fig. 3. There is a
clear visual pattern in the location of the sampled points,
due to this aliasing. The cycle shuffled surrogate (con-
structed with any of the methods described in this paper)
destroys that pattern and produces subtle variation that can
be detected as a statistical discrepancy between data and
surrogate (we have found that self-mutual information is
sufficiently sensitive to detect this discrepancy). One would
therefore (incorrectly) reject the hypothesis that this signal
is periodic. The presence of small to moderate observation
noise1 does not resolve this problem.

At present we do not have a suitable correction to over-
come the problem of aliasing. However, it is necessary only

1Exactly how much noise one can tolerate is a function of the sampling
time as well.

Figure 4: Corrected cycle shuffled surrogates. Here we
depict five corrected (via an affine in time correction) cy-
cle shuffled surrogates of the data depicted in Fig. 1. The
lower three panels are enlarged so as to depict the detail
and illustrate the cycle-to-cycle variability. Clearly, these
surrogates look much more like the original data than the
surrogates of Fig. 2.

to be aware of it and interpret results of these surrogate
algorithms accordingly. It is really only a problem with
strictly periodic signals — in which case the nature of the
signal should be obvious. For more natural signals the dila-
tion and rotation corrections are sufficient. In the next, and
final, section we apply these corrected cycle shuffled meth-
ods to the data of Fig. 1 with typical nonlinear measures as
test statistics. Moreover, aliasing is only truly a “problem”
as we are asking the wrong question — clearly the aliased
times series does have non-trivial long term deterministic
dynamics, they are just not properly of the underlying dy-
namical system.

4. The chaotic clarinet

We now conclude by returning to the experimental data
of Fig. 1. In Fig. 4 we depict five surrogates generated
in such a way as to preserve the trough values precisely
using an affine transformation as described in this paper.
Clearly, the surrogate now “look” like the data. Drift as-
sociated with the naı̈ve application of the cycle shuffled
method in Fig. 2 is now eliminated. Figure 5 illustrates a
comparison of estimates of correlation dimension, entropy
and noise level [20, 1] for the experimental data and an en-
semble of 50 surrogates. As the data is clearly atypical of
the surrogates we reject the null hypothesis and conclude
that the data contains long-term deterministic dynamics —
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Figure 5: Hypothesis test In the three panels we present
histograms of: (a) correlation dimension; (b) entropy; and,
(c) noise using the Gaussian Kernel Algorithm (embedding
lag of 28 and embedding dimension of 2 and 5). The value
for the data is depicted by a red bar and the ensemble for
the surrogates as the blue histogram. For all three statistics,
the data is significantly different from the surrogates.

it is consistent with a chaotic dynamical system.
Finally, we must note that the corrected cycle shuffled al-

gorithm implemented in this section (there are alternatives,
which we have only alluded to) keeps the trough positions
fixed. If one was to construct a Poincaré section from these
trough values this would be a trivial and useless statistic
with which to test the underlying dynamics. This, in part,
is the reason for our choice of attractor based statistics in
this section.
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