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Abstract—In the population of many selfish players, the
purpose of each player often conflicts with the total pur-
pose of the population. In such a situation, the “govern-
ment” which has the comprehensive perspective is needed
for governing the population. Recently, to model such a sit-
uation, replicator dynamics with capitation taxes has been
proposed. However, the amount of the capitation tax is as-
sumed to be constant and independent of the population
state. In this paper, we propose a model that the govern-
ment changes the capitation tax depending on the popula-
tion state. Using a two-strategy game, we investigate the
stability conditions and related bifurcations of equilibrium
points of our model.

1. Introduction

In the population of many selfish players, the purpose
of each player often conflicts with the total purpose of the
population [1]. In such a situation, a “government” which
has the comprehensive perspective is needed for governing
the population. The government collects a tax from each
player and reallocates it depending on a target state of the
government. The tax is roughly classified into rate taxa-
tions and capitation taxes. In the former, the tax is deter-
mined based on payoffs the players earn while it is fixed in
the latter. The authors proposed replicator dynamics with
such taxes to analyze their effects on players’ behaviors
[2, 3]. In the previous work, the amount of taxes is in-
dependent of the population state.

In this paper, we deal with the capitation tax and con-
sider the case that the government controls its amount de-
pending on the population state. We regard the government
as a game player. Its strategy is the amount of the tax and
its payoff is a sum of benefits and a cost of its taxation.
We extend replications dynamics proposed by Ref. [3] to
describe the co-evolution of both the populations and the
government. To investigate qualitative properties of such
taxation, we focus on two-strategy game and investigate
stability conditions of equilibrium points and related bifur-
cations.

2. Capitation Tax and Subsidy

Let P be the population of players. Suppose that Φp =

{1, 2, · · · ,mp} is a set of pure strategies of P, and S p is
a set of population states of P. A population state sp =

(s1
p, s

2
p, · · · , s

mp
p )T ∈ S p is a distribution of strategies in the

population P, where si
p is the proportion of players with a

pure strategy i ∈ Φp. Let ri
p : S p → R be the payoff func-

tion for the players of P with the pure strategy i ∈ Φp and
r̄p(sp) be the average payoff, i.e., r̄p(sp) =

∑
i∈Φp

si
pri

p(sp).
In this paper, we assume that the payoff function ri

p(sp) is
given by ri

p(sp) = eiT
mp

Asp for simplicity, where ei
l is the l-

dimensional unit vector such that the ith element equals 1
and an mp × mp matrix A is called payoff matrix. Replica-
tor dynamics which describes evolutions of distributions of
strategies of P is given as follows [4]:

ṡi
p = si

p

{
ri

p(sp) − r̄p(sp)
}
. (1)

We consider that the government collects capitation
taxes from all players of the population P and reallocates
them as subsidies depending on the desirable target popu-
lation state. Then, the payoff function of players with the
capitation taxes and the subsidies is given as follows [3]:

ri
p(sp) − τ + τ

si∗
p

si
p
= ri

p(sp) − τ
1 − si∗

p

si
p

 , (2)

where τ ≥ 0 is the amount of the capitation taxes and
s∗p = (s1∗

p , · · · , s
mp∗
p )T is the target population state. Note

that, the average payoff of players r̄(sp) is independent of
the capitation tax τ since all collected taxes are assumed to
be reallocated.

Substituting the right-hand side of Eq. (2) for players’
payoff function rp(sp) of Eq. (1), we have replicator dy-
namics with capitation taxes and subsidies as follows [3]:

ṡi
p = si

p

{
ri

p(sp) − r̄p(sp)
}
+ τ
(
si∗

p − si
p

)
. (3)

Note that we allow τ > ri
p(sp) for all i ∈ Φp. Moreover,

suppose that every pure strategy is adopted by some players
at least in the initial state, that is, si

p(0) > 0 is assumed to
hold for any pure strategy i ∈ Φp. By this assumption,
within finite-time intervals, si

p > 0 holds for all i ∈ Φp and
Eq. (2) is well-defined.

Equation (3) is given by adding the negative feedback
term τ(si∗

p − si
p) to the conventional replicator dynamics

Eq. (1), and the tax τ is considered as a feedback gain.
It has been proved that the target state of Eq. (3) is also

an equilibrium point if it is an equilibrium point of Eq. (1)
and Eq. (3) is invariant under a local shift of the payoff
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matrix A, where the local shift is the addition of a constant
to all elements of a column of A [3]. The stability condition
of the target state of Eq. (3) has also been derived [3]. We
focus on the case that the target state s∗p is an equilibrium
point of Eq. (1).

3. Dynamic Capitation Tax

Suppose that τmax is the maximum capitation tax which
the government can impose. The capitation tax τ ∈
[0, τmax] can be described by α ∈ [0, 1] as τ = ατmax.
Suppose that Φg = {1, 2} and S g are sets of pure and
mixed strategies of the government, respectively. We call
the first strategy maximum taxation and the second strat-
egy zero taxation. The maximum taxation and the zero
taxation mean that the government imposes τmax and 0
as the capitation taxes τ, respectively. A mixed strategy
sg = (α, 1 − α) ∈ S g defines a capitation tax between those
two strategies.

In general, the government’s taxation takes a cost and its
efficiencies depend on the current population state. Then,
the government must be willing to adopt the most effective
amount of taxes to the current population state. Thus, in
this section, we consider the government changes its strat-
egy based on its own payoffs.

Let ri
g : S p × S g → R be a payoff function for the gov-

ernment with the pure strategy i ∈ Φg and r̄g(sp, sg) be the
government’s current payoff, i.e., r̄g(sp, sg) = αr1

g(sp, sg) +
(1−α)r2

g(sp, sg). We suppose that the government increases
the taxes by increasing α in proportion to differences be-
tween the payoffs of the maximum taxation strategy r1

g and
the current payoffs r̄g which the government earns. Then,
the dynamics of α is also modeled by the following repli-
cator dynamics:

α̇ = α(1 − α)
{
r1

g(sp, sg) − r2
g(sp, sg)

}
. (4)

For simplicity, we assume that the payoff function
ri

g(sp, sg) is given by

ri
g(sp, sg) = eiT

2 Bsp + eiT
2 Csg, (5)

where the payoff matrices B and C are given by

B =
[

b1 · · · bmp

0 · · · 0

]
, C =

[
c1 0
0 0

]
. (6)

We consider that the matrix B represents the government’s
benefit depending on the current population state of P and
the matrix C represents a cost of the government’s taxa-
tion depending on the current α. Therefore, the elements
b1, · · · , bmp are assumed to be nonnegative and c1 is as-
sumed to be negative. Moreover, we assume that the zero
taxation strategy makes no benefit and cost. Then, all ele-
ments of the second lows of both matrices B and C are set
to 0. By these assumptions, Eq. (4) is rewritten as follows:

α̇ = −c1α(1 − α)

∑
i∈Φp

βisi
p − α

 , (7)

where βi = −bi/c1 for all i ∈ Φp. Since βi is the ratio
of the government’s benefits bi to the taxation cost c1, we
consider

∑
i∈Φp
βisi

p as a cost-efficiency of the government’s
taxation at population state sp.

4. Two-Strategy Game

In this section, to investigate stability of equilibrium
points of our proposed replicator dynamics, we consider a
two-strategy game. In the two-strategy game, we suppose
that players of the population P have two strategies. Equa-
tion (3) is invariant under a local shift of payoff matrix A.
Therefore, without loss of generality, we set the payoffma-
trix A to

A =
[

a1 0
0 a2

]
. (8)

Since s1
p + s2

p = s1∗
p + s2∗

p = 1, we have

ṡ1
p =
(
s1∗

p − s1
p

) {
d1

(
s1

p

)2
+ d2s1

p + d3

}
, (9)

α̇ = −c1α (1 − α)
{
(β1 − β2) s1

p + β2 − α
}
, (10)

where

d1 = a1 + a2, (11)
d2 = d1

(
s1∗

p − 1
)
− a2, (12)

d3 = d2s1∗
p + a2 + τmaxα. (13)

In the two-strategy game, two population states sp = (0, 1)T

and (1, 0)T are always equilibrium points of Eq. (1). More-
over, if a1a2 > 0 holds, then (η, 1 − η)T is also an equilib-
rium point, where η = a2/(a1 + a2). Therefore, we con-
sider three population states (0, 1)T , (1, 0)T , and (η, 1 − η)T

as a target state s∗p. However, we have the game with target
state s∗p = (0, 1)T by swapping pure strategies 1 and 2 of the
game with s∗p = (1, 0)T . So, as a target population state, we
select the following two equilibrium points: s∗p = (1, 0)T

on the boundary of S p and s∗p = (η, 1 − η)T in the interior
of S p.

We have ṡ1
p = 0 if s1

p = s1∗
p or d1

(
s1

p

)2
+d2s1

p+d3 = 0. On
the other hand, we have α̇ = 0 if α = 0, 1, or (β1 − β2)s1

p +

β2 − α = 0. Thus, ṡ1
p = 0 holds on the curve

l1 : α = − 1
τmax

{
d1

(
s1

p

)2
+ d2s1

p +
(
d2s1∗

p + a2

)}
. (14)

α̇ = 0 holds on the following line

l2 : α = (β1 − β2) s1
p + β2 := αl2

(
s1

p

)
. (15)

Table 1 shows equilibrium points of Eqs. (9) and (10),
and their existence conditions. Since the points Wl and Wr

are intersections of l1 and l2, their s1
p-coordinates ξl and ξr

satisfy
d1ξ

2 + w1ξ + w2 = 0, (16)
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Table 1: Equilibrium points of Eqs. (9) and (10), and their
existence conditions.

Equilibrium Point (s1
p, α) Existence conditions

T0 (s1∗
p , 0), T1 (s1∗

p , 1) always
Tl2 (s1∗

p , αl2 (s1∗
p ))

(
1 − s1∗

p

)
β2 ≤ 1 − s1∗

p β1

Wl (ξl, αl2 (ξl)) (w1)2 ≥ 4d1w2

Wr (ξr, αl2 (ξr)) ξ, αl2 (ξ) ∈ [0, 1] (for ξ = ξl, ξr)
O(0, 0), always
V(η, 0) s∗p = (1, 0)T and a1a2 > 0
V(1, 0) s∗p = (η, 1 − η)T

where

w1 = d2 + τmax (β1 − β2) , (17)
w2 = d2s1∗

p + a2 + τmaxβ2, (18)

and ξl ≤ ξr. Their α-coordinates are given by Eq. (15).
The target population state s∗p corresponds to the line T0T1,
that is, any point on the line is a target state. Therefore, the
achievement of the target state requires that the point Tl2 or
T1 is asymptotically stable.

By the linearization of Eqs. (9) and (10) around each
equilibrium point, we can investigate its stability condi-
tions and related bifurcations which depend on the param-
eters β1, β2, and τmax.

We define ζ as follows:

ζ = −3d1

(
s1∗

p

)2
+ 2 (d1 + a2) s1∗

p − a2. (19)

If τmax < ζ holds, then the equilibrium points T0, Tl2 , and
T1 are unstable independent of the parameters β1 and β2,
and the target state cannot be achieved. Therefore, we con-
sider the case of τmax > ζ in this paper.

We have a bifurcation set of Eqs. (9) and (10) in the β1-
β2 plane under τmax > ζ as shown in Fig. 1. The boundaries
of the regions in Fig. 1 are given as follows:

Tc1 : β1 = −
1 − s1∗

p

s1∗
p
β2 +

ζ

τmaxs1∗
p
, (20)

Tc2 : β1 = −
1 − s1∗

p

s1∗
p
β2 +

1
s1∗

p
, (21)

SN : β1 = β2 +
−d2 − 2

√
d1τmaxβ2

τmax
for β2 <

d1

τmax
. (22)

Note that we assume that a1 < 0 and a2 > τmax in
Fig. 1(a). These conditions imply that d1 > 0. If a1 > 0
(resp. a2 < τmax) holds, then Region I (resp. IIl) does
not exist. If d1 < 0, then not only Region IIl but also IIIl

does not exist. Also note that we assume that a1 > τmax

and a2 > τmax hold in Fig. 1(b). If 0 < a1 < τmax (resp.
0 < a2 < τmax) holds, then Region IIIr (resp. IIIl) does not
exist. If a1 < 0 and a2 < 0, not only Regions IIIr and IIIl

but also Regions IIr, IIl, and I do not exist.
Figures 2 and 3 show examples of their phase portraits

in each region of Figs. 1(a) and 1(b), where

A =
[
−1 0
0 4

]
, C =

[
−1 0
0 0

]
, τmax = 2, (23)

Table 2: Asymptotically stable and unstable equilibrium
points of Eqs. (9) and (10) in each region of Fig. 1(b).

Stable points Unstable points
Region I Wl, Wr O, V, T0, T1, Tl2
Region IIl Wl, Tl2 O, V, Wr, T0, T1

Region IIr Wr, Tl2 O, V, Wl, T0, T1

Region IIIl Wl, T1 O, V, Wr, T0, Tl2
Region IIIr Wr, T1 O, V, Wl, T0, Tl2
Region IV Tl2 O, V, T0, T1

Region V T1 O, V, T0, Tl2

and

A =
[

4 0
0 6

]
, C =

[
−1 0
0 0

]
, τmax = 3, (24)

respectively. Black squares and points correspond to sta-
ble and unstable equilibrium points, respectively. Note that
β1 = b1 and β2 = b2 hold in these cases.

In Region I, Wl and Wr (if s∗p = (η, 1−η)T ) are asymptot-
ically stable equilibrium points as shown in Figs. 2(a) and
3(a). On the boundary Tc1, a transcritical bifurcation oc-
curs, and the stability of Tl2 , and Wr or Wl is exchanged in
Region II as shown in Figs. 2(b) and 3(b). On the boundary
Tc2, a transcritical bifurcation which results from the colli-
sion of Tl2 and T1 occurs and their stability is exchanged in
Region III as shown in Figs. 2(c) and 3(c). On the bound-
ary SN, a saddle-node bifurcation occurs, and Wl and Wr

collide and disappear in Regions IV and V as shown in
Figs. 2(d) and 3(d). At the contact point Pf of Regions I
and IV, three equilibrium points Tl2 , Wl, and Wr collide,
and a pitchfork bifurcation occurs. Wl and Wr disappear
and Tl2 is stabilized at the same time. We summarize sta-
bility conditions of each equilibrium point of Eqs. (9) and
(10) in each region of Fig. 1 as shown in Table 2.

From definition of β, the value of (β1 − β2)s1
p + β2 de-

scribes the cost-efficiency of the government’s taxation at a
population state sp = (s1

p, 1− s1
p)T . By changing the param-

eters β1 and β2, the cost-efficiency also changes. In Region
I, the cost-efficiency of the taxation at the target state s∗p is
too low and the government cannot impose a sufficiently
large amount of tax on the players. Then, the target popu-
lation state cannot be achieved. In Regions II and III, the
cost-efficiency of the taxation at s∗p becomes high enough
to achieve the target state. In these regions, however, since
the cost-efficiencies at some population states sp ∈ S p are
not so high, the government must select a sufficiently large
value as the initial tax for the achievement of the target
state. In Regions IV and V, since the cost-efficiencies at not
only the target state but also any other population state are
sufficiently high, the government can impose a sufficiently
large amount of tax at any population state and control the
population to the target state for any initial population state
and any initial tax.
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(a) The target state s∗p = (1, 0)T (b) The target state s∗p = (η, 1 − η)T .

Figure 1: Bifurcation set of Eqs. (9) and (10). Denoted by Tc1 and Tc2 correspond to transcritical bifurcations, SN
corresponds to a saddle-node bifurcation, and Pf corresponds to a pitchfork bifurcation.
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Figure 2: Examples of phase portraits where the payoff matrices are defined by Eq. (23) and τmax = 2 in each region of
Fig. 1(a). Black squares are stable equilibrium points and black points are unstable equilibrium points.
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Figure 3: Examples of phase portraits where the payoff matrices are defined by Eq. (24) and τmax = 3 in each region of
Fig. 1(b).

5. Conclusions

In this paper, we have considered the government as
a game player and extended the model in [3]. We have
defined the government’s strategy as the maximum taxa-
tion and the zero taxation and its payoff as a sum of ben-
efits and a cost of the government’s taxation. Moreover,
we have proposed replicator dynamics which describes the
co-evolution of strategies of populations and the govern-
ment and, using a two-strategy game, have investigated the
stability conditions and related bifurcations of equilibrium
points.
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