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Abstract—In cortical networks, it has been known that
neurons generate self-sustained low-frequency firings in
the absence of sensory stimuli. The so-called “spontaneous
activity” typically gives rise to irregular and asynchronous
firing among cortical neurons. Despite numerous theoret-
ical attempts, the mechanism underlying the spontaneous
activity remained unclear. A breakthrough has been re-
cently made by Teramae et al. who proposed a neuronal
network model, in which EPSPs (Excitatory postsynaptic
potentials) obey a lognormal distribution. The model im-
plied that the lognormal distribution of EPSPs in cortical
networks was the key to sustain low-frequency firing of
the neurons. Whereas their model mainly focused on the
lognormal distribution, correlation of the EPSPs observed
between bidirectionally coupled neurons has been disre-
garded. In our previous study, we added correlated EPSPs
to the lognormal network and showed that the correlated
EPSPs generated synchronized firing among the neurons.
Extremely high firing frequencies were also observed in a
group of neurons. The aim of this paper is to study further
details of the neuronal dynamics in a network of correlated
EPSPs. We show that periodic fluctuations exist in short-
term population firing of the neurons. Such periodic fluctu-
ations seem to arise from periodic spikings of neurons with
high firing frequencies.

1. Introduction

The brain is composed of a huge number of neurons
that communicate with each other by sending or receiv-
ing spikes. In the cortex, the so-called “spontaneous activ-
ity” of neurons that generate ongoing spikes even without
external stimuli has been observed in both in vitro and in
vivo experiments [1]. The dynamics of spontaneous activ-
ity are characterized typically by low-frequency [2], irreg-
ular [3], and asynchronous firings of the neurons [4]. The
underlying mechanism of the spontaneous activity, how-
ever, remained unclear. To elucidate the origin of spon-
taneous activity, several models have been proposed, in
which independent noise was generated internally within
neurons or synapses [5]. Although such noise could sus-
tain irregular firings and propagate various information in

the neural network, the origin of the internal noise has not
been well explained. To resolve this remaining issue, an
alternative model composed of a large network of spiking
neurons with conductance-based synapses has been stud-
ied [6]. That model, however, generated unexpectedly
high firing frequencies and moreover weak input stimuli
were needed to sustain the spontaneous activity. In con-
trast to the former studies, Teramae et al. [7] recently pro-
posed a mathematical model focusing on a lognormal dis-
tribution of the excitatory postsynaptic potentials (EPSPs),
which have been measured experimentally in local cortical
circuit [8]. Without any internal noise, the model could
successfully reproduce main features of the spontaneous
firing activity including self-sustained low-frequency fir-
ings. Although their model provided a breakthrough in
the field, their study was still preliminary in the sense that
they model mainly focused on the lognormal distribution of
EPSP and disregarded correlation of the EPSPs observed
between bidirectionally coupled neurons [8]. In our pre-
vious study, we introduced correlated EPSPs to the log-
normal network model and observed synchronized firing
among the neurons as well as extremely high firing fre-
quencies in a certain portion of neurons. The aim of this
paper is to study further details of the neuronal dynamics
in a network of correlated EPSPs. In particular, we show
that periodic fluctuations exist in the population firings of
the neurons, which may contribute to synchronized firings
of the network dynamics.

2. Model and Analysis Method

2.1. Dynamics of a single neuron

The dynamics of individual neurons can be described by
a leaky Integrate-and-Fire model:

dv
dt
= − 1
τm

(v − VL) − gE(v − VE) − gI(v − VI), (1)

where v represents the membrane potential. In our simu-
lation, the membrane time constant τm was set to 20 ms
for excitatory neurons and 10 ms for inhibitory neurons.
The reversal potential of leak and excitatory and inhibitory
postsynaptic currents were set to VL = −70 mV, VE = 0
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mV, and VI = −80 mV, respectively. The excitatory and in-
hibitory synaptic conductance values gE and gI change in
time according to

dgX

dt
= −gX

τs
+
∑

j

GX, j

∑
s j

δ(t− s j − d j), X = E, I, (2)

where the index X denotes either excitatory neuron (X = E)
or inhibitory neuron (X = I). δ(t) stands for Dirac’s delta
function and GX, j, d j, and s j are weight, delay, and spike
timing of synaptic input from j-th neuron, respectively.
The decay constant τs was set to 2 ms. The synaptic de-
lays d j were selected from an uniform random number in
the range between d0 − 1 and d0 + 1 ms, where d0 = 2
ms was for excitatory-to-excitatory connections and d0 = 1
ms was for other connection types. The membrane poten-
tial threshold for a neuron to generate a spike was set to
Vthr = −50 mV, where v was reset to Vr = −70 mV after
the spiking. The refractory period was set to 1 ms.

2.2. Network structure of the cortical neuron model

The network model was composed of 2000 inhibitory
neurons and 10000 excitatory neurons. The excitatory-
to-excitatory connections were classified into bidirectional
and unidirectional connections, whose coupling probabili-
ties were set to Puni = 0.123 and Pbi = 0.0542, respectively
[8]. The EPSPs x obeyed a lognormal distribution:

p(x) =
exp[−(log x − µ)2/2σ2]

√
2πσx

, (3)

where the values µ − σ2 = log(0.2) and σ2 = 1.0 were set
based on the experimentally observed ones [8]. The corre-
sponding weight value GE, j( j ∈ E) was determined in such
a way that the membrane potential v reached to the EPSP
value of x from the resting state v after a spike input was
injected. We removed any unrealistic values of GE, j that
gave rise to EPSP amplitude larger than 20 mV. In addi-
tion to the lognormally distributed EPSPs, correlation be-
tween bidirectionally coupled EPSPs has been observed in
physiological experiment [8]. To introduce the correlation
between EPSP strengths of bidirectionally connected exci-
tatory neurons, we construct the EPSPs x1 and x2 as

x1 = exp [µ + σ(
√

1 − aY1 +
√

aX)],
x2 = exp [µ + σ(

√
1 − aY2 +

√
aX)],

(4)

where X, Y1, Y2 are independent Gaussian random num-
bers. The parameter a controls the correlation R between
x1 and x2. According to our numerical simulations, their
relation is approximated by a polynomial equation of R =
0.4252a2 +0.5579a. The correlation value of R = 0.36 was
reported in the physiological experiment [8].

Excitatory-to-inhibitory, inhibitory-to-excitatory, and
inhibitory-to-inhibitory connections were set to have con-
stant values of GE, j( j ∈ I) = 0.018, GI, j( j ∈ E) = 0.002,

and GI, j( j ∈ I) = 0.0025, respectively. The coupling prob-
abilities between excitatory-and-inhibitory, inhibitory-and-
excitatory, and inhibitory-and-inhibitory neurons were set
to PEI = 0.1157, PIE = 0.5785, and PII = 0.5785, respec-
tively.

In the simulation of the neural network model based on
Eqs. (1) and (2), we applied external Poisson spike trains
to all neurons during the initial period of 100 ms [7]. The
excitatory-to-excitatory synaptic transmissions failed at an
EPSP amplitude-dependent rate of pE = b/(b + EPS P),
where b = 0.1 mV.

2.3. Cross-correlogram

The level of synchronization between spike trains was
evaluated by the cross-correlogram (CCG). The CCG is
defined as a histogram of inter-spike intervals of 1000 ran-
domly selected excitatory neurons among a total of 10000
neurons. The time lag was set to range between −20 ms
and 20 ms with an increment of 1 ms. The CCG histogram
was normalized by the maximum value to remove its fre-
quency dependence. For spike trains with asynchronous
firings, the normalized CCG appears with a flat structure,
whereas it has a sharp peak at zero time lag for spike trains
with synchronous firings.

2.4. Coefficient of Variation

The regularity of spike train was evaluated by the Co-
efficient of Variation (CV). The CV is defined as standard
deviation of inter-spike intervals normalized by their mean
value. For regular spike trains, the CV is close to zero,
whereas it can be larger than one for irregular spike trains.

3. Result

3.1. Synchronization and periodic fluctuations in neu-
ral firings

This section provides simulation results of the network
dynamics for R = 0.5, which is larger than the one ob-
served in the physiological experiment [8]. Raster plot of
Fig. 1A shows spike timings of the individual neurons. For
the model with correlated connections, the observed fir-
ing dynamics showed two features. First, the spike trains
appeared simultaneously among different neurons, indi-
cating their synchronous firings (Fig. 1 A). This observa-
tion is consistent with the normalized CCG displaying a
sharp peak at the zero time lag (Fig. 1B). Second, short-
term average (time window of 1 ms) of population firing
frequencies shows periodic fluctuations in both excitatory
and inhibitory neurons (Fig. 2A). In two-dimensional rep-
resentation of the firing frequencies of excitatory and in-
hibitory neurons, the orbit resembled a limit cycle oscil-
lation (Fig. 2B). To confirm the limit cycle oscillations,
fluctuations observed in the short-term average frequencies
were analyzed by the fast Fourier transform for excitatory

- 637 -



A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1400  1450  1500  1550  1600

N
eu

ro
n 

nu
m

be
r

Time [ms]

B

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

-20 -15 -10 -5  0  5  10  15  20

N
or

m
al

iz
ed

 C
ro

ss
-c

or
re

lo
gr

am

Time lag [ms]

Figure 1: Simulation results with correlated EPSPs (R =
0.50). (A) Raster plot. Spike timings are indicated for ex-
citatory neurons (number from 0 to 10000) and inhibitory
neurons (number from 10000 to 12000). (B) Histogram
of the normalized cross-correlogram (CCG). Time lag is in
the range from −20 ms to 20 ms with a bin size of 1 ms.

(Fig. 2C) and inhibitory neurons (Fig. 2D). The result indi-
cates that their fluctuations indeed shows a strong period-
icity at around 150 Hz.

3.2. Effect of regular firings induced by high firing fre-
quencies

Fig. 3A shows distributions of the firing frequencies of
excitatory neurons. The firing frequency was computed by
counting the number of spikes generated from each neu-
ron for duration of 10 s. About 6 % of neurons shows fir-
ing frequencies higher than 10 Hz (Fig. 3A). According to
our visual inspection of Fig. 1A, neurons with high firing
frequencies tend to generate regular spikes. To evaluate
the level of regularity in the spikes, the CV was computed
for two neurons, which showed a frequency of about 60
Hz. Fig. 3B shows time series (duration of 10 s) of the
CV and firing frequency computed in a short time win-
dow of 500 ms. When neurons show high frequency firing,
small values of CV were observed (Fig. 3B: solid line from
t = 2500 ms to t = 4000 and dotted line around t = 3000
ms). Conversely, large CV values were observed when the
neurons showed low frequencies (Fig. 3B: solid line from
t = 4000 ms to t = 6500 and dotted line from t = 6500
ms to t = 9000). Indeed, as shown in a two-dimensional
plot (firing frequencies v.s. CVs) of Fig. 3C, the CVs tend

to be inversely proportional to the firing frequencies. This
implies that neurons fire with a strong periodicity as their
frequencies get high.
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Figure 2: Fluctuations of firing frequencies in the network
of correlated couplings (R = 0.50). (A) Time series of
averaged population firing frequencies for excitatory (bot-
tom) and inhibitory (top) neurons are shown from t = 1400
ms to t = 1600 ms. (B) The corresponding orbit in two-
dimensional space (excitatory v.s. inhibitory firings). The
power spectra of time series of averaged firing frequencies
are shown for excitatory (C) and inhibitory neurons (D).
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4. Discussions

This paper studied the effect of correlated bidirectional
connections on the neural network of lognormally dis-
tributed EPSPs. We observed that the correlation induced
synchronized oscillations among neurons, which are not
usually observed in spontaneous firing activities. Short-
term average of population firing frequencies showed peri-
odic fluctuations. Our analysis, which focused on neurons
with high firing frequencies, revealed that the neurons gen-
erate regular spikes when their firing frequencies are high,
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Figure 3: (A) Histogram of the firing frequencies of excita-
tory neurons. The inserted figure is a magnification of the
range from 10 to 150 Hz. (B) Short-term averaged firing
frequency (top) and CV (bottom) of two excitatory neu-
rons are shown from t = 100 ms to t = 10100 ms (t = 10
s). (C) Two-dimensional representation of (B), in which
firing frequencies are plotted against their corresponding
CV. Two makers denote different excitatory neurons (circle
and square points correspond to solid or dotted line of (B),
respectively).

whereas they generate irregular spikes when their firing fre-
quencies are low. Our result suggests that the regular firings
may induce periodic fluctuations of the population firings,
whereas irregular firings may contribute to self-sustained
firings of the spontaneous activity.
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