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Abstract— Brains are believed to be capable of
information processing with remarkable efficiency but low
metabolic cost. Here we provide computational evidence
that salient features of irregular firing, oscillations and
criticality in cortical activity can be simultaneously
accounted in a generic neural circuit capturing the
excitation-inhibition balance with realistic synaptic
dynamics. Their simultaneous organization achieves
maximal information efficiency and minimal firing rate.

1. Introduction

Cortical information processing with synaptic
transmission and action potentials is metabolically
expensive [1]. Therefore, neural codes are required to
achieve “economy of impulses” [2] by reducing mean
spike rate and increasing energy efficiency, e.g.
representational capacity per energy unit. Cost-efficiency
of neural codes is likely an underlying design principle for
constraining cortical activity level and organizing cortical
activity patterns. The constraint on neuronal firing rate
can be understood by taking into consideration the relative
energy distribution for spikes and resting states [3].
However, so far, the connection of cost-efficiency with
cortical activity patterns is still lacking.

Cortical activities represent neural codes by generating
various spatiotemporal spike patterns, with salient features
at multiple scales: irregular firings [4,5], synchronized
oscillations [6,7] and neuronal avalanches [8,9]. They
have been studied separately in different models about
different implications for information processing, such as
accuracy and speed of information relay by firing rate
[10,11], coordination and communication between neural
populations [12,13], and sensitivity to signals and
perturbations [14].

Here we demonstrate that cost-efficient neural
representation is reflected in the co-organization of these
multi-scale features in neuronal network model.

2. Model

We simulate large random networks of excitatory-
inhibitory (E-I) spiking neurons with E-I ratio 4:1 and
connection probability 0.2 (Fig. 1A). The network is
biologically plausible with conductance-based integrate-
and-fire (IF) neurons (Fig. 1B) interacting through

voltage-dependent synaptic currents [15]. Each neuron
also receives external excitatory projections independently.
The conductance change due to a pre-synaptic spike is
modeled as a bi-exponential function with conduction
delay time tl Ty, rise time T ;- and decay time t T4 (Fig.
1C). The coupling strengths are chosen to realize a
balanced state, where neurons fire irregularly [10]. We
study the parameter space of excitatory and inhibitory
decay times (tt) for various dynamical modes and cost-
efficiency of the corresponding spike patterns.

3. Results

In this model, with suitable pair of parameters (z, 74),
multi-scale  cortical  activities can indeed be
simultaneously generated. There are three different
dynamical states with different synchrony degree:
asynchronous irregular state (both decay times are large,
e.g., 74,=6ms, 7;,~=6ms), moderately synchronized state
(inhibitory synapses are relatively slower, e.g. 7,=4ms,
74=10ms) and highly synchronized state (excitation very
fast and inhibition much slower, e.g. 7,=2ms, 7;~=14ms)).
The moderately synchronized state is the most interesting
regime. Here we can observe the co-organization of multi-
level dynamics: (1) The firing activity of individual
neurons is irregular, with CV (standard deviation over
mean of inter-spike intervals (ISI)) close to 1, indicating
that the spiking train is very close to random poison
process. (2) However, the whole network displays
collective oscillations in the gamma band (40-60 Hz),
where the oscillation power increases with the degree of
synchronization. (3) The oscillations are induced by
constantly changing clustering of the neuronal firing like
neural avalanches. Interestingly, the distribution of the
avalanche size follows a power-law distribution in this
region, suggesting that the system is at the self-organized
critical state due to the interaction between excitatory and
inhibitory populations. The co-organization of the
dynamical modes is shown in Fig. 2.

Importantly, in the regime of co-organization of the
multi-level dynamical modes as experimentally observed,
the firing patterns are cost—efficient. The firing rate in this
regime is minimal, while the energy efficiency of the
neural representation #=H/E is maximal. Here H (the
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entropy) measures the abundance of different spike
patterns, and E=nr+m is the average energy expenditure
per pattern (m spikes among » neurons), with » being the
energy usage for resting neurons relative to a spike (1/7
measures the relative energy constraint level on the spike
patterns [3]). Here we considered both the binary case
(Fig. 3A,C) where in a time window we examine whether
a neuron is active or not, irrespective of how many spikes,
and the analogy case (Fig. 3B,D) by taking the number of
spikes into account. The neuron representation is cost-
efficient in both cases.

External input

rate f.,

Fig. 1 Schematics of network architecture, neuronal
integration and spike, synaptic conductance traces. (A)
The local recurrent neuronal network consists of
excitatory (Exc) and inhibitory (Inh) spiking neurons with
synaptic connections (blue, excitatory; red, inhibitory) and
external inputs. (B) The IF neurons with refractory period

and leaky current. (C) The unitary conductance response
to a pre-synaptic spike is described by a bi-exponential
function with latency 7, rise time 7, and decay time 7.
Parameters from [15].
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Fig. 2. Co-existence of multi-scale cortical activities at
moderately synchronized states. ISI CV (red), distance
of avalanche size distribution from power-law (black) and
peak power of network oscillations (blue) vs. E--E
Synchrony (synchronization between the spikes of
excitatory neurons), showing the co-existence of irregular
firings, synchronized oscillations and neuronal avalanches
at moderately synchronized states.
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Fig. 3. Cost-efficient neural representation in critical region. (A, B) Average excitatory firing rate (A) and energy
efficiency # of analog patterns at /=0 (B) in the parameter space (ty, 74) (unit: ms). (C, D) Energy efficiency 7 at
various  (colors) and average excitatory firing rate (black) with respect to E--E Synchrony for both binary (C) and

analog (D) cases. Cost-efficiency is achieved robustly

in the critical region across the empirical range of r.
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3. Conclusion

We showed that experimentally observed salient
features of neural activity, including irregular firing of
individual neurons, collective oscillations of the network
and self-organized critical states can be accounted
simultaneously in a biologically realistic E-I balanced
network, and such co-organization of the dynamical
modes achieves cost-efficient neural representation. It will
be interesting to study in the future how the cost-efficient
neural dynamics are employed in neural information
processing, memory and learning.
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