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Abstract – In this paper we show that Chua’s circuit 
with nonlinearity being an odd function has a property 
which does not occur in the same circuit when the 
nonlinearity is not an odd function. We discuss the 
influence of this property on application of the circuit as a 
source of signal, mimic noise generated by a 
nondeterministic physical system. 
 
1. Introduction 

 
During the last few decades, the chaotic dynamics of 

many continuous systems have been evaluated in detail. 
One of these systems is Chua’s circuit. An idealized 
Chua’s circuit is shown in Figure 1 [2]-[4], [6], [9], [10], 
[14], [15]. It contains simple electronic components like 
resistors R, capacitors C, inductors L and a nonlinear, 
memory-less element NR . Energy is pumped into the 
circuit via operational amplifiers used in the real circuit.  

 

 
 

Fig. 1. An idelized Chua’s circuit. 
 
The dynamics of Chua’s circuit is modeled by the set of 
ordinary differential equations 

( )

z
y

Ry
L

z

z
C

yx
RC

y

xg
C

xy
RC

x

0

22

11

1

11

11

−−=

+−=

−−=

&

&

&

)(

)(

,  (1) 

where 021 ≠LCCR ,,, , and )(xg  is a nonlinear function. 
In this simple setup, it is possible to observe 
experimentally almost all phenomena characteristic for 
nonlinear dynamical systems, which gives Chua’s circuit a 
significant advantage over other chaotic systems.  

In the paper, we consider the difference between Chua’s 
circuit with an odd )(xg , and the same circuit with 

)(xg  not being an odd function. The function )(xg  is 
odd if and only if )()( xgxg −−= . 

 
2. Non-Achievable Points of Non-Periodic Orbits 
 

Chua’s circuit is an example of a dynamical system. 
Generally, a dynamical system can be defined in many 
ways. In this paper, we use the following definition [7]. 
 
Definition 1 
A dynamical system ( )μα ,, XT  on metric space X with 
measure μ  is a family of transformations XXT →:α , 
satisfying the following conditions: 

(a) xxT =)(0  for all Xx∈ ; 

(b) )())(( '' xTxTT αααα +=  for all Xx∈ , 
where the parameter α  (time) may be continuous or 
discrete.  

Denoting the set of values of parameter α  as Γ , we 
can define the following cases: R=Γ , +=Γ R , Z=Γ , 

+=Γ Z . If R=Γ  or +=Γ R , a continuous-time 
dynamical system is obtained. For R=Γ  the system is 
reversible and for +=Γ R  it is not reversible, that is, it is 
defined only for 0≥α . Similarly, if Z=Γ  or +=Γ Z , a 
discrete-time dynamical system is obtained. For Z=Γ  
the system is reversible and for +=Γ Z  it is not reversible. 

If ∞<⊆ dRX d , , we obtain a d-dimensional 
continuous-time or discrete-time dynamical system. The 
function XxxT ∈00 ),(α , considered as a function of 
α , is called an orbit or a trajectory of the dynamical 
system ( )μα ,, XT . The orbit of the system is denoted as 

}{ αx . To distinguish a continuous-time dynamical system 
from a discrete-time dynamical system, the latter one is 
denoted as ( )XT n , , where Zn∈  and the former one as 

( )XT t , . The orbit of system ( )XT t ,  is written as }{ tx  

and the orbit of system ( )XT n ,  as }{ nx .  

The key to understanding the difference between Chua’s 
circuits with different )(xg  is the definition of odd-
symmetric dynamical system. 
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Definition 2 
A dynamical system ( )μα ,, XT  is said to be odd-
symmetric under the transformation xx −→  of state 
variables ),..,,(),..,,( 2121 dd xxxxxx −−−→ if  

)()( xTxT −−= αα .   (2) 

It is known that the evolution of a chaotic system is 
sensitive to the initial conditions and the values of the 
parameters: any small change in an initial condition or 
parameter, changes the future evolution of the system 
dramatically. Generally, knowing the previous states of a 
chaotic system, we cannot precisely determine which 
states cannot be achieved after some time. Exceptions are 
the states already generated, which cannot be repeated 
during a non-periodic evolution of a chaotic system. The 
difference between Chua’s circuits with different )(xg  
results from the following new theorem: 
 
Theorem 
Points x and –x are not elements of the same non-periodic 
orbit of an odd-symmetric dynamical system ( )μα ,, XT . 
 
Proof 

Let us assume that a non-periodic orbit of an odd-
symmetric dynamical system ( )μα ,, XT  contains both x 
and –x, where Xxx ∈−, . At time instant 1α  the orbit 
starting at a certain Xx ∈0  goes through a point, e.g. 

Xx∈ . If point Xx∈−  was not obtained for 1αα <  
and it ought to belong to the same non-periodic orbit, then 
it must be obtained after time 2α , starting from instant 

1α . In other words, it should be true that 

( ) xxTT −=)( 0
12 αα .   (3) 

Since the orbit goes through Xx∈ , it is also true that  
xxT =)( 0

1α .    (4) 
From (3) and (4) 

( ) xxT −=2α .    (5) 
After time 2α , we obtain  

( ) )()( xTxTT −= 222 ααα .   (6) 
If  ( )μα ,, XT  is odd-symmetric 

)()( 22 xTxT αα −=− .   (7) 
Substituting (5) into (7) we obtain 

( ) xxT =−2α .    (8) 
If ( )μα ,, XT  is odd-symmetric, we first obtain x, then –x, 
and finally x, i.e. a periodic orbit. This contradicts the 
assumption that the orbit is non-periodic. Thus, if x is an 
element of a non-periodic orbit, then –x cannot be an 
element of the same orbit and vice versa, which ends the 
proof.  

If )(xg is odd, equations (1) are symmetric under the 
transformation ),,(),,( zyxzyx −−−→ and the 
dynamical system is odd-symmetric. Orbits starting from 

),,( 000 zyx  and from ),,( 000 zyx −−−  are conjugate, 
and the points ),,( zyx  and ),,( zyx −−−  cannot 
belong to the same non-periodic orbit. However, they can 
belong to the same periodic orbit. Chaotic orbits with 
these properties can be obtained for a smooth cubic 
nonlinearity [14]: 

3bxaxxg +=)( .  (9) 
The existence of points that cannot be elements of a non-
periodic orbit, unequivocally related to points previously 
generated, is a new property of dynamical systems. This 
property is characteristic for Chua’s circuits with odd 

)(xg and for a relatively small number of other systems. 
It is not observed in most continuous-time chaotic systems 
described in the literature because these systems are not 
odd-symmetric [12]. Examples of systems that are not 
odd-symmetric include, e.g., the Lorenz system, Chen’s 
system or the Rössler system.  

The differential equations describing the dynamics of 
the Lorenz system have the following form [8] 
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where 0≠a . The set of equations (10) is symmetric 
under the transformation ),,(),,( zyxzyx −−→ . 
Equations describing Chen’s system [1] 
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where 0≠rcba ,,, , are symmetric under the same 
transformation as for the Lorenz system. In contrast with 
the Lorenz attractor, Chen’s attractor is topologically more 
complex [12]. An example of a dynamical system with 
chaotic orbits, which is not symmetric for any coordinate, 
is the Rössler system [11]: 
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where 0≠cba ,, . As was the case above, apart from 
points previously generated we cannot precisely specify 
points that cannot belong to this non-periodic trajectory.  

An example of chaotic system with the same property 
as Chua’s circuit with odd )(xg  is Thomas’ system [13] 
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where 0>b . Another example is the double scroll 
system [5] 
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where 0>a . Both systems are symmetric under the 
transformation ),,(),,( zyxzyx −−−→ .  

The theorem proved above shows that odd-symmetric 
continuous-time chaotic systems may generate signals that 
are theoretically less noise-like than signals produced by 
continuous-time systems that are not odd-symmetric. 
Theoretically, we should avoid using such systems as a 
source of noise-like signals, e.g. in generating random 
numbers. Using chaotic signals for random number 
generation is an important application of chaotic systems. 
Since the same theorem can be easily extended to odd-
symmetric and even-symmetric discrete-time chaotic 
systems, these systems should also not be used as a 
sources of noise-like signals. On the other hand, a real 
circuit is not free from nondeterministic noise, which in 
practice eliminates this disadvantage. However, chaotic 
signals generated by an isolated odd-symmetric 
continuous-dynamical system and by a system that does 
not have this property cannot be considered as signals 
with exactly the same properties, even when these systems 
have identical values of known parameters such as 
Lyapunov exponents, KS entropy, dimensions, etc.  

 
3. Conclusion 

 
The main point of this paper was the difference 

between Chua’s circuits with different nonlinearities. A 
theorem was proved that shows that non-periodic orbits of 
an odd-symmetric dynamical system have a property that 
does not occur for non-periodic orbits generated by a 
dynamical system that is not odd-symmetric. This 
property is independent of the parameters describing the 
chaotic dynamics of the system. It introduces an 
additional difference between chaotic signal and noise 
coming from a nondeterministic physical source. This 
difference is not observed for continuous-time chaotic 
systems that are not odd-symmetric. Chua’s circuit is 
probably the only circuit capable of demonstrating in the 
same hardware the behavior characteristic for both odd-
symmetric systems and systems lacking this symmetry.  
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