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Abstract—This paper studies the ring-type growing par-
ticle swarm optimizer (RGPSO) for multi-solution prob-
lems where the number of solutions is unknown. This al-
gorithm uses ring-topology and has no random parameter.
The number of particles can increase and the swarm can
grow. The RGPSO can identify all the solutions and can
clarify the number of solutions. The necessary number of
particles depends on the number of solutions and is esti-
mated based on the increasing number of particles.

1. Introduction

The particle swarm optimizer (PSO) is a population-
based optimization method inspired by flocking behavior
of living beings [1]-[3]. The particle positions correspond
to potential solutions and is evaluated by an objective func-
tion. The particles search desired optimal solution(s) based
on inter-particle communication. The PSO is simple in
concept, is easy to implement and has been applied to opti-
mization problems in various systems, e.g., signal proces-
sors, filters, switching power converters, renewable energy
systems, and nonlinear dynamical systems [4]-[11].

For single solution problems, the PSO is suitable for
global search. Because it can find an optimal solution by
few particles even if the search apace is vast. However,
standard PSOs are not suitable for multi-solution problems
(MSP [12]-[16]) where particles are often trapped into par-
tial/local solutions.

This paper studies ring-type growing particle swarm op-
timizer (RGPSO) for the MSP. Especially, we consider the
case where the number of solutions is unknown. The RG-
PSO is defined on a particle swarm of ring-topology and
the swarm can grow by generation of new particles. If pa-
rameter values are selected suitably, the RGPSO can iden-
tify all the approximate solutions. Also, the RGPSO in-
cludes no random parameters: it is deterministic. Such a
deterministic system is convenient in motion analysis and
reproducibility performance evaluation.

2. Algorithm

The objective function for the RGPSO is defined by

FA : S A → R+,
S A = {(x1, x2)|XL ≤ xi ≤ XR, i = 1, 2} (1)

where S A is a search space and R+ denotes positive reals.
Assuming FA has plural minima, the solutions xi

s are de-
fined by

FA(xi
s) = 0,

xi
s ≡ (xt

s1, x
t
s2) ∈ S A, i = 1 ∼ NA

(2)

where i = 1 ∼ NA and NA is the number of solutions. The
RGPSO uses N particles. For the objective function F. The
i-th particle Pi is characterized by its position xi and veloc-
ity vi. The update of the particle is based on the personal
best (Pbesti) and local best (Lbesti). The Pbesti gives the
best value in the past history of Pi. Lbesti is the best of the
personal best in the neighbor of Pi. The neighbor particles
are given depending on the structure of the particle swarms.
We use the ring structure where the both sides particles are
the neighbors of a particle. In order to defined the algo-
rithm, let t be a search step and let Pt denote the particle
swarm at time t. Let Pt

i be the i-th particle, let xt
i be its

position and vt
i be its velocity where i = 1 ∼ N.

In this paper, we assume that the number of solutions
NA is unknown. Our purpose is to identify positions of
all the approximate solutions and to clarify the the number
solutions. The RGPSO is defined as the following.

STEP 1 (Initialization 1): The number of approximate so-
lutions is initialized: k = 0. The number of areas of ap-
proximate solutions is initialized: S = 0.
Let the number of particles be N.

STEP 2 (Initialization 2): Let search step t = 0. Particle
positions xt

i and velocities vt
i are initialized where i = 1 ∼

N. Personal bests and local bests are initialized: �xpbesti =

�xlbesti = �x
t
i.
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STEP 3 (Approximate solutions): If the i-th particle posi-
tion satisfies

F(�xt
i) < CA (3)

then xt
i is declared as an approximate solution. The approx-

imate solution is labelled by ak. (If this is the first approxi-
mate solution then S = 1).

STEP 4 (Area judgement): If ak is not included in an area
of existing approximate solutions then a new area is gener-
ated.

S ← S + 1 if |�ak − �a j| > r for j < k (4)

where | · | denote the Euclidean distance and the parameter
r decides the approximate solution area. We have used the
descending sort algorithm in the judgement. Let k = k + 1.

STEP 5 Personal and local bests are updated:

�xt
pbesti

← �xt
i if F(�xt

i) < F(�xt
pbesti

)

�xt
lbesti
← �xt

pbesti
if F(�xt

pbesti
) < (�xt

lbesti
)

Position and velocities are updated:

�vt+1
i ← w × �vt + c × (�xt

lbesti
− �xt

i)

�xt+1
i ← �xt + �vt+1

i

(5)

where w and c are deterministic parameters. Note that the
RGPSO includes no random parameters.

STEP 6 (Increase of particles):
At t = n1T1, N1 pieces of new particles are added and are

assigned randomly in the ring-topology, where n1 denote
integers and T1 is a time interval.

N ← N + N1 at t = n1T1

STEP 7 Let t ← t + 1, return to STEP 3 and repeat until
t = tmax. At t = tmax, go to STEP 8

STEP 8 If the number of solution regions is not change af-
ter repeating STEP 3 to STEP 7 M times then the algorithm
is terminated. Otherwise, go to STEP 2.

3. Numerical Experiments

We have applied the RGPSO to MSPs defined by the
following simple cost function

fm(x1, x2) = cos
4mπ
N

x1 + cos
4mπ
N

x2 + 2

x1 ∈ {−N,N}, x2 ∈ {−N,N}
(6)

where N = 128 and m ∈ {2, 3, 4, 5} Depending on the pa-
rameter X, the search area and the number of solutions vary.
For simplicity, we have selected four values of X as shown
in Table 1. Figure 1 shows typical results. Table 1 summa-
rize results of 100 trials.

Figure 1: Typical search results

Table 1: Parameters and results. #SOL = the average num-
ber of solutions. #PLC = the average number of particles.
#ASL = the average number of identified solutions.

X 2 3 4 5
#SOL 16 36 64 100
#PCL 73.5 206.5 328 713
#ASL 15.5 35.45 63.55 98.65

4. Conclusion

We have studied the RGPSO for MSPs where the num-
ber of solutions is unknown. Performing numerical exper-
iments for fundamental MSPs, the algorithm efficiency is
investigated.
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