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Abstract—In this study, synchronization patterns
generated in globally cross-coupled chaotic circuits are
investigated. Computer simulations and circuit exper-
iments show that this coupled system produces several
phase patterns.

1. Introduction

Many people have been trying to develop some ap-
plications to information processing by exploiting os-
cillatory phenomena in neural networks. Such neural
networks can produce some kinds of phase patterns,
and they may be utilized for associative memory or
image processing [1][2].

On the other hand, since synchronization phenom-
ena in coupled chaotic systems are good models to de-
scribe various higher-dimensional nonlinear phenom-
ena in the field of natural science, studies on synchro-
nization phenomena in such systems are extensively
carried out in various fields [3][4].

In our past studies [5]-[7], we investigated the state
transition phenomenon in two cross-coupled chaotic
circuits and the phase patterns characterized by syn-
chronization in a ring of cross-coupled chaotic circuits.
The interesting state transition phenomenon and vari-
ous synchronization phenomena including quadrature-
phase synchronization are inherent in our coupled
model.

In this study, we consider a globally coupled model
based on the cross-coupled chaotic circuits and inves-
tigate the synchronization patterns characterized by
various synchronization modes in the coupled system.
Computer simulations and circuit experiments for the
case of three and four subcircuits cases show that the
proposed coupled system produces several synchro-
nization patterns.

2. Basic Circuit [5][6]

In this section, we review the phenomena observed
from simple two cross-coupled chaotic circuits. Fig-
ure 1 shows the basic circuit model. In this model,
two simple autonomous chaotic circuits [8][9] are cross-
coupled via inductors L2.

The circuit equations are given as follows.










ẋk = zk

ẏk = α{γyk − wk − βf (yk − zk)}
żk = β f(yk − zk) + wk+1 − xk

ẇk = δ(yk − zk+1)

(1)

Figure 1: Basic circuit model.
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and z3 indicates z1. The function f are nonlinear func-
tions corresponding to the v − i characteristics of the
nonlinear resistors of the diodes and are described as
follows.

f(yk − zk) =

{

yk − zk − 1 (yk − zk > 1)
0 (|yk − zk| ≤ 1)
yk − zk + 1 (yk − zk < −1)

(3)

A typical example of the observed phenomena is
shown in Fig. 2. Figure 2(a) is computer simulated
results obtained by integrating Eq. (2) with the Runge-
Kutta method and Fig. 2(b) is the corresponding cir-
cuit experimental results. In this state, the two circuits
exhibited chaos but almost synchronized in in-phase in
the sense that the attractor was almost in the quad-
rant I or III on the y1 − y2 (or v11 − v21) plane. The
behaviors of the circuits are very interesting because
the solutions on the yi−zi planes seem to be attracted
to the fixed points located at around (yi, zi)=(±1.2,
0). However, after converging to the fixed points, the
solution abruptly moves toward the other fixed point.
When one circuit switches to/from the positive region
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Figure 2: State transition phenomenon around in-phase
synchronization. (a) Computer calculated results. α = 2.5,
β = 4.0, γ = 0.1, and δ = 0.0014. (b) Circuit experimen-
tal results. L1 = 9.93mH, L2 = 800mH, C1=32.8nF, and
C2=49.5nF, and g=683mS. (a1) y1 − z1. (a2) y1 − y2.
(a3) Time waveform. (b1) v11 − v12. (b2) v11 − v21.
(b3) Time waveform v11 and v21.

from/to the negative region in this way, the other fol-
lows the transition after a few instants.

By changing initial conditions, similar transition
phenomena can be observed around anti-phase syn-
chronization and quadrature-phase synchronization as
shown in Fig. 3.

Figure 4 shows how the characteristics of the syn-
chronization states change as the coupling parameter
δ increases. The horizontal axis is δ and the vertical
axis is the average length of the transitions and the
delay time in τ . The curve of crosses shows the av-
erage period of the state transitions between positive
and negative.

The curve of squares shows the average delay time of
the state transitions of y2 with respect to y1, when the
anti-phase synchronization appears. While the curve
of circles shows the average delay time of the state
transitions of y2, when the quadrature-phase synchro-
nization appears.

We can see that both anti-phase and quadrature-
phase synchronizations coexist for a relatively wide
parameter range.

3. Globally Cross-Coupled Chaotic Circuits

In this study, we consider a globally coupled system
based on the cross-coupled circuits in Fig. 1. Namely,
all n chaotic circuits are coupled to the others directly.
Figure 5 shows the case of three circuits where R is
small resistors introduced to avoid a loop of only in-
ductors. In this case, the number of the connections
from each node is two and each subcircuit has two
nodes. Hence, the total number of the connections are
3× 2× 2/2 = 6. Generally speaking, the total number
of the connections of n coupled system is expressed as
n × 2 × (n − 1)/2 = n(n − 1).

By using the normalization similar to Eq. (1), the
normalized circuit equations for the case of n = 3 are
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Figure 3: State transition phenomenon around (1) anti-
phase synchronization and (2) quadrature-phase synchro-
nization. (a) Computer calculated results. α = 2.5,
β = 4.0, γ = 0.1, and δ = 0.0014. (b) Circuit exper-
imental results. L1 = 9.93mH, L2 = 1.2H, C1=32.8nF,
C2=49.5nF, and g=495mS.

given as follows.







































































ẋk = zk (k = 1, 2, 3)
ẏ1 = α{γy1 − w1 − w2 − βf (y1 − z1)}
ẏ2 = α{γy2 − w3 − w6 − βf (y2 − z2)}
ẏ3 = α{γy3 − w4 − w5 − βf (y3 − z3)}
ż1 = β f(y1 − z1) + w4 + w3 − x1

ż2 = β f(y2 − z2) + w2 + w5 − x2

ż3 = β f(y3 − z3) + w1 + w6 − x3

ẇ1 = δ(y1 − z3 − εw1)
ẇ2 = δ(y1 − z2 − εw2)
ẇ3 = δ(y2 − z1 − εw3)
ẇ4 = δ(y3 − z1 − εw4)
ẇ5 = δ(y3 − z2 − εw5)
ẇ6 = δ(y2 − z3 − εw6)

(4)

where ε is the parameter corresponding to the small
resistors R.

4. Synchronization Patterns

Because the basic two cross-coupled circuits gener-
ates three types of synchronization states; in-phase,
anti-phase, and quadrature-phase, we can expect the
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Figure 4: Characteristics of synchronization states. α =
2.5, β = 4.0, and γ = 0.1.
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Figure 5: Three cross-coupled chaotic circuits.

generation of various types of synchronization patterns
from the globally cross-coupled circuits.

4.1. Three subcircuits case

For the case of three subcircuits, the synchronization
states can be expressed by the phase differences of y2

and y3 with respect to the reference waveform y1. For
example, fully in-phase synchronization can be writ-
ten as [0, 0, 0]. Also, if y2 is synchronized to y1 with
π/2 phase difference (quadrature-phase) and y3 is syn-
chronized to y1 with π phase difference (anti-phase),
the state can be written as [0, π/2, π]. By using this
notation, all possible combinations of the phase states
can be summarized as

TYPE I :[0, 0, 0]

TYPE II :[0, 0, π/2], [0, π/2, 0], [0, 0,−π/2],
[0,−π/2, 0], [0, π/2, π/2], [0,−π/2,−π/2]

TYPE III :[0, 0, π], [0, π, 0], [0, π, π]

TYPE IV :[0, π/2, π], [0, π, π/2], [0, π,−π/2],
[0,−π/2, π], [0, π/2,−π/2], [0,−π/2, π/2]

(5)

Please note that all combinations in the same type can
be obtained by using the symmetry of the coupling
structure.

Figures 6 shows computer calculated results of the
all possible types of synchronization states observed
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Figure 6: Four types of synchronization states (computer
calculated result). α = 2.5, β = 4.0, γ = 0.1, δ = 0.0007,
and ε = 0.0005. From upper, TYPE I, II, III, and IV.
(a) Attractor on y1 − y2 plane. (b) Attractor on y2 − y3

plane. (c) Attractor on y3−y1 plane. (d) Time waveform.
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Figure 7: Circuit experimental result. L1 = 10.25mH, L2

= 1.5H, C1=32.2nF, C2=49.5nF, and g=512mS. (a) At-
tractor on v11−v12 plane. (b) Attractor on v12−v13 plane.
(c) Attractor on v13 − v11 plane. (d) Time waveform v11

and v21.

from the three cross-coupled circuits. Please note that
the coupling parameter δ is a half of the case of the two
circuits in Figs. 2 and 3. This is because the number
of the connections are doubled. Figure 7 shows an
example of circuit experimental results (TYPE II).

4.2. Four subcircuits case

For the case of four subcircuits, all possible types of
the synchronization states can be summarized using
the same notation as follows;

TYPE I : [0, 0, 0, 0]
TYPE II : [0, 0, 0, π/2]
TYPE III : [0, 0, 0, π]
TYPE IV : [0, 0, π/2, π/2]
TYPE V : [0, 0, π, π]
TYPE VI : [0, 0, π/2, π]

(6)

All other combinations of phase states can be obtained
from these type by using the symmetry of the coupling
structure.

Figures 8 shows computer calculated results of the
all possible types of synchronization states. As similar
to the previous case, the coupling parameter δ is one
third of the case of the two circuits in Figs. 2 and 3.

5. Conclusions

In this study, we have investigate the synchroniza-
tion patterns characterized by the synchronization
states in globally cross-coupled chaotic circuits. We
confirmed that several patterns could be observed by
giving different initial conditions to the circuits for the
cases of the number of the circuits are three and four.
Our future research includes the investigation of the
larger size circuits, the clarification of the generation
mechanism of the transition, and the application to
signal processing using the proposed circuit.
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Figure 8: Six types of synchronization states (computer
calculated result). α = 2.5, β = 4.0, γ = 0.1, δ = 0.00046,
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