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Abstract—In recent years, many researchers pay atten-
tion to swarm intelligence as the application of the opti-
mization problem solver. Firefly algorithm is one of such
swarm intelligence algorithms, it is inspired by the flash-
ing and attracting behavior of fireflies. In this article, we
consider a deterministic firefly algorithm to analyze the dy-
namics rigorously. The state update equation of the deter-
ministic firefly algorithm contains two important parame-
ters;β0 andγ. We analyze the effect of the solution search
of these parameters. Based on the analysis result, we pro-
pose a modified firefly algorithm to improve the solution
search performance. We confirm the solution search per-
formance by using come benchmark functions.

1. INTRODUCTION

Under the given constraints, Optimization Problem is to
find a solution that a certain objective function gives the
maximum value or the minimum value. The optimization
problem has been studied in various fields such as engi-
neering, economics, and et al.

In recent years, many researchers pay attention to swarm
intelligence as the application of the optimization prob-
lem solver. The swarm intelligence algorithms is between
agents to emerge the behavior by local interaction [1]. For
example, some methods are based on the behavior of ants
colony, slime mold colony, fish flock, and so on. Firefly
Algorithm (abbr. FA) is also one of such swarm intelli-
gence algorithms. It is developed based on the characteris-
tics of the blinking of natural firefly by Xin-She Yang etal.
in 2007[2].

To analyze the dynamics of FA, we proposed a determin-
istic FA. Based on the analysis results of the deterministic
FA, we propose an improved deterministic FA. We confirm
the solution search performance of the proposed FA by us-
ing some benchmark functions.

2. FIREFLY ARGORITHM

In the firefly algorithm, there are two important points:
the variation in the light intensity and the formulation of the
attractiveness. So for optimization problems, a firefly with
high/low intensity will attract another firefly with high/low
intensity. The distancer i j is the distance between thei-
th firefly and thej-th firefly. The light intensityI (r) is in
inverse proportion into the square of the distance.

I (r) = Is/r
2 (1)

where,Is is the light intensity at the source. The light
intensity I varies with the distancer i j depending upon a
fixed light absorption coefficientγ.

I = I0e−γr (2)

where,I0 is the initial light intensity
Each firefly has its distinctive attractivenessβ which im-

plies how strong it attracts other members of the swarm.
The attractiveness is varied and it changes depending upon
the distance between thei-th firefly andi-th firefly. Since
the attractiveness is proportion to the light intensity seen by
adjacent fireflies, the attractiveness function is defined as

β = β0e−γr
2

(3)

where,β0 is the attractiveness atr = 0 andγ is a light
absorption coefficient.

Cartesian distance between any two firefliesi and j at xi

andx j , respectively is

r i j = ||xi − xi || =

√√√ D∑
d=1

(xi,d − x j,d)2 (4)

The movement of thei-th firefly is attracted to another more
attractive (brighter)j-th firefly is determined by

xt+1
i = xt

i + β0e−γr
2
i j (xt

j − xt
i )

+α(rand− 1/2)
(5)

where rand ∈ [0,1] is a uniform distributed random
number[3].

3. DETERMINISTIC FIREFLY ALGORITHM

In order to analyze the dynamics of FA, we consider our
proposed deterministic FA[4]. Without loss of generality,
we can consider the case of one-dimensional. We assume
that the j-th firefly found the optimum solution. The opti-
mum solution locates at the origin. Also, the initial posi-
tions of other fireflies are located excepting the origin. We
consider the case oft = 0 of Eq. (5) as follows.

xt+1
i = xt

i − β
γ(xt

i )
2

0 xt
i (6)
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Since the system described by Eq. (6) does not contain
stochastic factor, the system can be regarded as a deter-
ministic system. Thus, we call this system a deterministic
FA. The dynamics of thei-th firefly of the deterministic
FA is described by a one-dimensional return map as shown
in Fig. 1. It shows the cases the parametersγ andβ0 are
varied. Figure 1 indicates that the characteristic of the one-
dimensional return map is depended on the parameter. In
the case whereγ is large, the most of the domain of the
return map into itself. On the other hand, whenγ becomes
small, the return map is varied depending onγ. In this case,
the search range is enlarged. Therefore, the search range is
determined by theγ. If β0 is large, the amount of the move-
ment in the vicinity of thej-th firefly increases. Namely,β0

controls search range around the found best position.
As shown in Fig. 1, the absolute value of the slope of the

one-dimensional return map at the origin is controlled of
β0. So we consider the slope of the one-dimensional return
map.

dxn+1
i

dxn
i

= 1+ (2γ(xn
i )2 − 1)β0e−γ(x

n
i )2

(7)

In this case, we assume the optimal position is the origin.
If the absolute value of the slope of the origin is greater
than 1, the dynamics around the origin is expanded. On the
other hand, if the absolute slope around the origin is less
than 1, the trajectory converges to the origin. From Eq. (7),

the slope of the origin is
d(xn+1

i )
dxn

i
|xi=0 = 1− β0. Therefore, if

β0 > 2, the map is expandable. Also, if 0< β0 < 2, the
map is regarded as a contraction map.

Figure 2 illustrates the time evolution of the search posi-
tion on the return map depending on the parameters. Fig.
2(a) that the parameter isβ0 = 0.5, the search point is
monotonously attenuated, and all fireflies converge to the
origin which corresponds to the optimal position. Fig. 2(b)
that the parameter isβ0 = 1.5, the search point converges
to the origin with oscillation. Fig. 2(c) that the parameter
is β0 = 3.5, the search point converges to the two periodic
points. In this case, the firefly to search for only two points.
Fig. 2(d) that the parameter isβ0 = 5.5, the time-series
of the search point exhibits non-periodic motion. In or-
der to improve the performance of exploration, we propose
the novel deterministic FA that the initial attractiveness pa-
rameterβ0 is varied. The initial attractiveness controls the
search range.

4. THE PROPOSED METHOD

From the analysis results of one-dimensional determin-
istic FA, β0 determines how to explore around the location
of the best location. The parameterγ determines the scope
of the exploration of each firefly. The state update equation
of the deterministic FA is described as

xn+1
i = xn

i + β0e−γr
2
i j (xn

j − xn
i ) (8)

(a) β0 = 0.5 (b) β0 = 1.5

(c) β0 = 3.5 (d) β0 = 5.5

Figure 2: Individual behavior by attractivenessβ0

Based on the deterministic FA, we propose a novel de-
terministic FA with a time variant intension parameter to
improve the solution search performance of the determin-
istic FA. If β0 is large, the system exhibits non-periodic
motion into large search region. In this case, the system
is said to be a global search state. On the other hand, if
β0 is small, the system searches the narrow region around
the found best position. Such motion is regarded as a lo-
cal search state. To combine these two states, we change
the parameterβ0 to the time variant parameter. At first, the
parameterβ0 sets the maximum valueβmax. The parameter
is gradually decrease until the value reaches the minimum
valueβmin.

Figure 2(a) shows the case where all fireflies are con-
centrated in one place and the solution search process is
terminated whenβ0 is less than equal to 2. To avoid such
solution search termination to improve the search perfor-
mance, it is need to change the search state if all fireflies
are centralized around the found best potion. So, we define
a criterion regionϵ, if all fireflies are concentrated in this
criterion region, we apply re-arrangement process.

The parameterβ0 and the update equation of the novel
FA is described as

xn+1
i = xn

i + β0e−γr i j (x j − xi)

βn+1
0 =

{
βmin (βn

0 − δ < βmin)
βn

0 − δ (otherwise)
(9)

However, if all fireflies are concentrated in one criterion
regionϵ, Namely,|xn

best− xn
i | < ϵ, The parameterβ0 and the

update equation of the novel FA is is changed as follows
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(a) γ = 0.01 (b) γ = 0.1 (c) γ = 1

Figure 1: Effect of parameters to search region

Table 1: Simulation conditions
Item Conditions
β0 5.5(Deterministic FA)

1 < β0 ≤ 6.5(Proposed FA)
γ 0.001
δ 0.01

Dimension of Evaluation function 10
Number of trials 10

Number of fireflies 10
Maximum iteration 10000

Initial value [-20:20]

{
xn+1

i = Uniform (lmin, lmax)
βn+1

0 = βmax
(10)

Uniform (lmin, lmax) is a uniform distributed random
number whose region is [lmin, lmax]

5. NUMERICAL SIMULATIONS

In order to confirm the effect of the parametersβ0 and
γ, we use two-dimensional Sphere function to the search
range and parameterγ are shown in Fig. 3. The horizontal
axis represents the light absorption coefficient γ, and the
vertical axis represents the search range. From this result,
we confirm that the search range is narrowed whenγ is
increased.

Figure 4 shows the relationship between the search range
and the parameterβ0. Whenβ0 is less than equal to 2, The
firefly converges to the found best position. Such motion
corresponds to the stagnation of the solution search pro-
cess. Our proposed method can overcome such situation.

To confirm the search performance of our proposed FA,
we carry out some numerical simulations. In order to con-
firm the search ability, we compare FA, the determinis-
tic FA, and the proposed deterministic FA. The simula-
tion conditions conditions are shown in Table 1. Table 2
shows benchmark functions used in our numerical simula-
tions. Table 3 shows the simulation results. The simulation

results indicate that the performance of the proposed FA is
better than the deterministic FA. However, the performance
of the proposed FA is worse than the conventional FA.

At first, theβ0 is a large value then the proposed method
performs global search. After that,β0 is reduced. The sys-
tem exhibits the state transition to the local search state.
Depending on such state transition, the proposed system
can find a good solution than the deterministic FA.

6. CONCLUSIONS

In this article, we confirmed the effect of the parame-
tersβ0 andγ. Based on the analysis results, we proposed
the novel a deterministic FA with time variant parameter
β0 The numerical simulation results indicate that the solu-
tion search performance of the proposed deterministic FA
is better than the deterministic FA. However, the perfor-
mance is inferior than the conventional FA. To improve the
search performance is the most important issue of our fu-
ture problems.
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Table 2: Benchmark Functions
Function Equation

Shifted Griewank Function f1(y) = 1+ 1
4000

∑D
d=1 y2

i −
∏D

d=1 cos(yi√
i
), y = x − o

Shifted Rosenbrock Function f2(y) =
∑D−1

d=1 (100(yd+1 − y2
d)2 + (yd − 1)2), y = x − o

Shifted Rastrigin Function f3(y) = 10N +
∑D

d=1((y2
d − 10 cos(2πyd))), y = x − o

Rotated Griewank Function f4(x) = f1(z), z= Mx
Rotated Rosenbrock Function f4(x) = f2(z), z= Mx
Rotated Rastrigin Function f6(x) = f3(z), z= Mx

o is uniform random number,M is D × D rotating matrix

Table 3: Simulation results
Function Method Mean value Deviation Best value Worst value

DFA 1135.69 83.09 938.64 1264.60
Shifted Griewank Function The proposed DFA 852.89 136.57 718.29 1094.45

FA 701.05 0.03 700.10 701.10
DFA 10082.96 2255.75 6622.65 14361.05

Shifted Rosenbrock Function The proposed DFA 1779.76 1668.28 732.96 6391.67
FA 474.42 47.18 408.09 579.64

DFA 1039.71 28.46 981.54 1079.02
Shifted Rastrigin Function The proposed DFA 1007.59 49.36 925.08 1089.97

FA 874.72 19.47 849.28 908.83
DFA 705.96 1.80 703.80 710.13

Rotated Griewank Function The proposed DFA 852.89 136.57 718.29 1094.45
FA 700.90 0.09 700.76 701.020

DFA 520.43 49.27 446.94 625.26
Rotated Rosenbrock FunctionThe proposed DFA 403.96 2.79 401.36 411.96

FA 400.41 0.19 400.12 400.75
DFA 932.93 11.65 914.94 955.46

Rotated Rastrigin Function The proposed DFA 864.90 37.72 821.45 934.85
FA 821.51 16.60 804.16 856.32
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Figure 3:γ and search range

Figure 4: Solution search range in the state update 100-200
times
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