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Abstract—
We have already proposed a method to evaluate the in-

fluence of dynamical noise on chaotic systems [1]. It
was demonstrated that the influence of dynamical noise
on a typical chaotic system Chua’s electronic circuit can
be extracted by the temporal fluctuation of singular val-
ues (TFSV) obtained from singular value decomposition
(SVD), independently of the presence of measurement
noise. However, the obtained results have not yet been suf-
ficiently verified from the statistical perspectives so far.

In this study, some statistical tests are performed regard-
ing the influence of data length. Among them, the results
of famous Akaike’s Information Criterion (AIC) [4] are
mainly illustrated. As a result, it is found out that the valid-
ity of the results of our already proposed method is proved
and the adequate conditions to obtain statistically correct
results can be determined by the analyses.

1. Introduction

Every physical system is subject to noise in the real
world. In general, there are two types of noise in any
physical system, namely, measurement noise and dynam-
ical noise. Different from the former, the latter type of
noise is said to be realistically intrinsic to a physical sys-
tem and yields an extremely complicated mechanism ac-
companied by feedback. As a result, it is quite difficult to
analyze both on the theoretical and experimental levels. On
the other hand, since a chaos system displays particularly
strong nonlinearity and sensitivity to its initial condition,
dynamical noise may have a remarkable and fatal influence
on a chaos system. Numerous studies concerning dynami-
cal noise in chaos have appeared.

We have already proposed a method to evaluate the in-
fluence of dynamical noise on chaotic systems [1]. It
was demonstrated that the influence of dynamical noise
on a typical chaotic system Chua’s electronic circuit can
be extracted by the temporal fluctuation of singular val-
ues (TFSV) obtained from singular value decomposition
(SVD), independently of the presence of measurement
noise. However, the obtained results have not yet been suf-
ficiently verified from the statistical perspectives so far.

In this study, some statistical tests are performed regard-
ing the influence of data length. Among them, the results
of famous Akaike’s Information Criterion (AIC) [4] are
mainly illustrated.

As a result, it is found out that the validity of the results
of our already proposed method is proved and the adequate
conditions to obtain statistically correct results can be de-
termined by the analyses.

2. Proposed Method

2.1. Noise

Generally, dynamical noise and measurement noise are
defined for a flow system, respectively, as follows:

ẋ = f(x, ξ(D)), (1)

y = g(x) + ξ(M), (2)

where x and y are, respectively, the underlying state vec-
tor and the observed one; f is a governing function of the
system; g is an observation function; and ξ(D) and ξ(M) are
dynamical and measurement noise, respectively.

2.2. Temporal Fluctuation of Singular Values (TFSV)

SVD is the operation to diagonalize the singular ma-
trix. Now, if the N×n rectangular matrix X is diagonal-
ized, the covariance matrix XtX can be decomposed into
XtX = VΣ2Vt, where Σ2 is the n×n diagonal matrix and
V and Vt are the n×n orthogonal matrix and the trans-
posed matrix of V , respectively. Here, VVt = VtV =
In is satisfied using the n×n unit matrix In. As Σ2 =

diag(σ2(1),σ2(2),. . .,σ2(n)) is obtained, we can extract sin-
gular values (SVs) {σ(i)|i = 1,2,. . .,n}, which are non-zero.
The relatively larger SVs correspond to the principal or-
thogonal basis of the deterministic system. In general, mea-
sured data is frequently obtained as a scalar time series.
The procedure of SVD for such data is explained. Now,
a (n, J)-window:{xi,xi+J ,. . .,xi+(n−1)J} is prepared, where n
is the number of elements of the window and J is a sam-
ple time in applying the method of delays as described
in Ref.[2]. Here, a finite measured time series {xi∈R|i =
1,2,. . .,N+n−1} is transformed into the N×n(N�n) matrix
X and the n×n covariance matrix XtX can be obtained.

2.3. In the presence of Measurement Noise

In the presence of measurement noise, each SV uni-
formly increases, since the underlying state vectors and the
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noise are uncorrelated, as explained in Ref.[2]. If the sys-
tem remains steady, uniformly increased SVs are expected
to be nearly constant independent of the passage of time.

2.4. In the presence of Dynamical Noise

On the other hand, in the presence of dynamical noise,
the result is utterly different from the case of measurement
noise [1, 5]. As a result, SVs temporally fluctuate for con-
secutive time series. Thus, the influence of dynamical noise
on chaos can be extracted with a different form from that of
measurement noise. This result means that the influences
of dynamical noise and measurement noise can be distin-
guished even in the case of the noise-mixed data composed
of both noises.

2.5. Performance Index S

In practice, TFSV can be estimated as follows (see
Fig.1). First, temporally consecutive time series data sets
are prepared. Each of sets is called an “interval” {Ik |k
= 1,2,. . .,Nint} in this study. In each Ik, N elements are
included such as {xN(k−1),xN(k−1)+1,. . .,xN(k−1)+N}. Second,
SVs {σk(i)|i = 1,2,. . .,n} are calculated in each Ik, where i
is an “Index” of SVs lined in descending order. Third, each
standard deviation S (i) of SVs over all intervals is calcu-
lated every ith Index. Finally, S av, the average of S (i) over
all “Indices”, is obtained as concrete expression of TFSV.
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Figure 1: The concept of the extraction of TFSV. Tempo-
rally consecutive time series data sets are prepared. Each
of sets is called an “interval” {Ik |k = 1,2,. . .,Nint}. N ele-
ments; {xN(k−1),xN(k−1)+1,. . .,xN(k−1)+N} are included in each
Ik. Meanwhile, each performance index S (i) of SVs over
all intervals is calculated for every ith Index. TFSV can be
estimated by the average S av as a proxy of S (i).

S (i) =

√∑Nint

k=1 (σk(i) − σ(i))2

Nint
, S (i) ∈ [0,∞], (3)

S av =

∑n
i=1 S (i)

n
, S av ∈ [0,∞], (4)

where σ(i) is the average of σk(i) over all “intervals” for
ith Index.

3. Numerical Analysis

3.1. Preparation

Chua’s electronic circuit is used as a typical chaos sys-
tem, which is described by the 3-dimensional ordinary dif-
ferential equations that follow [3],

C1
dVC1

dt
=

1
R

(VC2 − VC1 ) − fNR (VC1 ), (5)

C2
dVC2

dt
=

1
R

(VC1 − VC2 ) + iL, (6)

L
diL

dt
= −VC2 , (7)

where fNR (VC1 ) = GbVC1 +
1
2 (Ga - Gb)|VC1 + Bp| - |VC1 -

Bp|. VC1 , VC2 and iL indicate voltage of two capacitors C1,
C2 and the current of coil L, respectively. fNR (VC1 ) denotes
the 3-segment odd-symmetric voltage-current characteris-
tic of the nonlinear resistor NR, by which the system ex-
hibits a large variety of typical chaotic behaviors. The i.i.d.
dynamical noise ξ with a 0 mean is added to VC1 such as
VC1→VC1 + ξ as additive noise. In this work values of pa-
rameters giving rise to double-scroll chaos are selected as
follows, C1 = 10 nF, C2 = 100 nF, L = 18 mH, 1/R =
0.55 1/Ω, Ga = −0.758 mA/V , Gb = −0.409 mA/V , and
Bp = 1.17 V . Here, the analyses are performed for the
scalar time series of VC1 . In this study, 4 kinds of time
series are prepared, these being noise-free data (NF−data),
measurement noise data (M−data), dynamical noise data
(D−data), and noise-mixed data composed of both dynam-
ical noise and measurement noise (DM−data). Each noise
level is given as a ratio of a standard deviation of noise
data to that of the time series VC1 in NF data. The range
of the noise amplitude is 0.01%-20.0% for M−data and
0.01%-3.7% for D−data, where 3.7% is the maximum, be-
low which a chaotic state can be retained. For DM−data,
measurement noise with a 20.0% noise level is added to all
D−data. The 4th-order Runge-Kutta method is used with
a constant time step τs = 0.000005. The number of data
length N in each interval and the number of intervals Nint

are 100, 000 and 10, 000, respectively. SVD is performed
for all intervals to extract TFSV. However, ahead of SVD,
an adequate (n,J) window should be determined, satisfying
the window length τw = nτL = nJτs, where the lag time
τL is expressed as τL = Jτs. In this study, the adequate
window length should satisfy nJ = 60 and SVD is under-
taken for (n,J) = (4,15) [1]. Although n = 4 is not satisfied
with Takens’ embedding theorem, the embedding dimen-
sion 4 was selected as the condition, on which the change
of TFSV can be more clearly captured, from the prelimi-
nary verification with various combinations of (n,J).

3.2. Results of TFSV

In figure 2(a), the distribution of TFSV of the representa-
tives for 4 types of time series is illustrated. From standard
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deviations of these distributions, each S av is obtained as
shown in figure 2(b).
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Figure 2: (a) The distribution of TFSV of the representa-
tives for 4 types of time series. (b) Results of TFSV for the
4 representatives. (c) Influence of the data length in each
interval. (d) Influence of the number of intervals.

3.3. Estimation of Data Length N in each Interval

The influence of the data length in each interval on S av

is estimated with the normalized index S av, as follows [5],

S av =
√

N × S av, (8)

where N is the number of data points in each interval. The
result can be shown in Figure 2(c) for NF−data. The data
length from 1, 000 to 100, 000 are used for this estimation.
As the data length increases, S av seems to converge to a
constant value in the range of more than nearly 30, 000 data
length. It can be said that the data length 100, 000, which
has been used in this study, seems to be statistically suf-
ficient to obtain the adequate results. In Figure 2(d), the
influence of the number of intervals is shawn. Few change
of S av is recognized as the number increases. However, N
and Nintshould be carefully determined. Next, as one of
the famous analytical methods, AIC is introduced for the
selection of adequate N and Nint.

4. A Statistical Test (AIC)

Some statistical approaches to select an adequate model
to a given system or phenomenon have been proposed.
Akaike’s Information Criterion (AIC) is one of the most
famous method among them [4]. In general, AIC can be
expressed as following equation,

AIC = −2 × MLL + 2 × k, (9)

where MLL means maximum logarithmic likelihood and k
the number of degree of freedom.

If a stochastic density distribution of the target system
f (xk,θ) { xk |k = 0,1, · · ·, n } , θ:parameters is given, a
logarithmic likelihood function LL can be defined as LL =
logL = Σn

k=1log f (xk, θ). Accordingly, MLL is decided by
θopt satisfying ∂

∂θ
LL |θopt = Σ

n
k=1 log f (xk, θ) |θopt = 0.

In this work, AIC is used to statistically verify the va-
lidity of the results in Sections 3.2 and 3.3 and find the
minimum data length in each interval and the minimum
number of intervals, where statistically stable results can
be obtained. Two types of tests are performed correspond-
ing to the purposes. The first is to determine the minimum
data length, where S av converges to a constant value cor-
responding to the results of Section 3.3. The second is to
determine the minimum number of intervals, where the re-
sults can be regarded as statistically stable.

As each set {S (i)} indicates a normal distribution as
shown in Figure. 2(a), the four types of models to compare
the characteristics of two distributions are prepared for AIC
test, as follows.

Model1 (M1) : μ1 = μ2, ν1 = ν2,

Model2 (M2) : μ1 � μ2, ν1 = ν2,

Model3 (M3) : μ1 = μ2, ν1 � ν2,

Model4 (M4) : μ1 � μ2, ν1 � ν2,

where μ1 and μ2 are averages, and ν1 and ν2 are variances
for the two distributions, respectively.

Here, a general procedure is explained for this case. Two
sample sets such as {x1,x2,· · ·,xn} and {y1,y2,· · ·,yn} are pre-
pared. Each set has a normal distribution N(μ1,ν1) and
N(μ2,ν2), where μ1 and μ2 are averages, and ν1 and ν2 are
variances for xk and yk (k = 0,1, · · ·, n), respectively.

The stochastic density distributions can be expressed,

f (xk, μ1, ν1) =
1√

2πν1
e−

(xk−μ1)2

2ν1 (10)

f (yk, μ2, ν2) =
1√

2πν2
e−

(xk−μ2)2

2ν2 . (11)

Accordingly, logarithmic likelihood function can be given,

LL(μ1, μ2, ν1, ν2) =

Σn
k=1 log f (xk, μ1, ν1) + Σn

k=1 log f (yk, μ2, ν2).(12)

For the two given distributions, the four AIC values are cal-
culated corresponding to the four above-mentioned models.
The adequate model to the given distributions can be deter-
mined by selecting the model with the minimum AIC value
among the four calculated AIC values.

For the first test, two distributions of SVs corresponding
to the two different time series of NF-data with a defferent
N are compared. One is the distribution at the data length
N = 100, 000 and the other is at another N value. If S av

converges to a constant value as data length increases, the
selected model should be M1 or M2, which has a relation
ν1 = ν2. Accordingly, from the model selection, it becomes
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Figure 3: A selection of a model indicating the smallest
AIC value in determination of the minimum data length in
each interval in NF-data. (a) Selected models are different
dependent on data length in each interval. (b) A model M2
is selected at the data length 60, 000 for example.

possible to determine the minimum data length, where the
statistically stable results can be obtained. For the second
one, two distributions of SVs of NF-data are also com-
pared. One is the distribution at Nint = 10, 000 and the other
is at another Nint value. If S av becomes stable as the num-
ber of intervals increases, the selected model should be M1
or M2 analogously to the first case. Accordingly, from the
model selection, it becomes possible to determine the min-
imum number of intervals, where statistically stable results
can be obtained.

The results of the analyses are illustrated in Figures 3
and 4 only for a set {S (1)}. The selected model is indi-
cated for each data length and each number of intervals,
respectively. As in other sets {S (i)} similar tendencies can
be seen and the first SV can be regarded as dominant in
the system, it is enough to estimate only the results of a set
{S (1)}. In Figures 3, a model M1 or M2, which has a rela-
tion ν1 = ν2, is selected in the range of more than the data
length 60, 000 in each interval under the fixed number of
intervals 10, 000. Furthermore, in 4, a model M1, which
has a relation ν1 = ν2, is selected in the range of more than
5, 000 intervals under the fixed data length in each interval
10, 000. Accordingly, it is found out that the previous cal-
culation condition N = 100, 000 and Nint = 10, 000 are reli-
able enough and the minimum numbers can be determined
as N = 60, 000 under the fixed data length 10, 000 and Nint

= 5, 000 under the fixed number of intervals 10, 000, re-
spectively. Similar results are obtained by other statistical
tests; F-test and Kolmogorov−S mirnov test as a conven-
tional hypothesis test. These tests, however, need a sig-
nificance level and some preprocesses. While, AIC is free
from those operations. Accordingly AIC is more conve-
nient than other methods and hence the results of statistical
analyses are illustrated by only AIC.

5. Conclusions

Some statistical methods are introduced for the verifica-
tion of the results by the proposed method, particularly, the
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Figure 4: A selection of a model indicating the smallest
AIC value in determination of the minimum number of
intervals in NF-data. (a) Selected models are different de-
pendent on the number of intervals. (b) A model M1 is
selected at the number of intervals 5, 000 for example.

analyses of AIC is mainly explained here. The adequate
models are selected from the smallest AIC value for both
the minimum data length in each interval and the number
of intervals. As a result, it is found out that the validity of
the results of our already proposed method is proved and
the adequate conditions to obtain statistically stable results
can be determined by the analyses.

Acknowledgments

We would like to thank Professor K. Aihara and his col-
leagues, especially Dr. Y. Hirata at The University of Tokyo
for fruitful comments and stimulating discussion. This
study was supported by a Grant-in-Aid for Scientific Re-
search of JSPS.

References

[1] M. Todoriki, H. Nagayoshi, and A. Suzuki, Temporal
Fluctuation of Singular Values caused by Dynamical
Noise in Chaos, Phys. Rev. E, 72, pp. 036207, 2005.

[2] D. S. Broomhead, and G. P. King, Extracting Qualita-
tive Dynamics from Experimental Data, Physica D, 20,
pp. 217, 1986.

[3] R. N. Madan, Chua’s Circuit: A Paradigm for Chaos,
World Scientific Nonlinear Science Ser. B, World Sci-
entific vol.1, 1993.

[4] H. Akaike, A New Look at the Statistical Model Iden-
tification, IEEE Trans. Autom. Control, 19, pp. 716,
1974.

[5] M. Todoriki, and S. Hasegawa, Further Investigation
for the SVD-based Analysis of Dynamical Noise on
Chaos, Proc. Int. Symo. NOLTA2007, Vancouver, pp.
473, 2007.

- 376 -


	Navigation page
	Session at a glance
	Technical program

