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Abstract—Quadratic assignment problem (QAP) is a
typical example of NP-hard problems. Therefore, we need
to develop algorithms for finding good approximate solu-
tions in a reasonable time frame. In this paper, we proposed
a new algorithm that controls execution of the 2-exchange
method, which is one of the heuristic algorithms for solving
QAPs by chaotic dynamics. In the proposed algorithm, we
modified the assignment of neurons and proposed a param-
eter tuning method for connection weights. As a result, our
algorithm can find not only good solutions but also reduce
the memory consumption.

1. Introduction

In our life, many optimizaion problems exist, for exam-
ple, scheduling, vehicle routing, facility location problem,
and so on. It is important to solve these probrems, because
the cost can be reduced. However, it is almost impossible to
obtain an optimal solution, because these problems such as
scheduling, vehicle routing, facility location problem are
classified into nondeterministic polynomial time solvable
(NP)-hard problems. Therefore, we need to develop ap-
proximate algorithms to obtain near optimal solutions in a
reasonable time frame.

On the other hand, several approximate algorithms
are proposed for solving Quadratic Assignment Problem
(QAP). For example, the 2-exchange method is well known
to solve QAP. However, local searches such as the 2-
exchange method are generally trapped into local min-
ima. For this reason, many methods to escape from the
local minima have also been proposed: for example, tabu
search[1, 2], genetic algorithm[3], chaotic dynamics[4, 5]
and so on. In Ref.[4], the 2-opt method for solving travel-
ing salesman problems is controlled by the chaotic dynam-
ics, while in Ref.[5], the 2-exchange method for solving
QAPs is controlled by the chaotic dynamics. In Refs.[4, 5],
the chaotic dynamics is introduced to control the heuris-
tic algorithms. In this paper, we propose an algorithm for
solving QAPs based on Ref.[5]. In the proposed algorithm,
the assignment of neurons is modified to reduce memory
consumption. In addition to control chaotic dynamics, we
adaptively decide a parameter depending on the state of the
solution. As a result, we succeeded to improve the perfor-
mance of the proposed algorithm.

2. QAP

The QAP is one of the most difficult NP-hard combi-
natorial problems. The QAP is formulated as follows:
when two n × n matrices, a distance matrix D and a flow
matrix R are given, we are asked to find an assignment
p = {p(1), p(2), · · · , p(n)} that minimizes an objective func-
tion. The objective function of QAP is defined by Eq.(1):

F(p) =
n∑

i=1

n∑
j=1

Di jRp(i)p( j), (1)

where p(i) is the element i of the permutation p. If p(i) = j,
the element i is assigned to the location j. In the follow-
ing, we explain the algorithm of the 2-exchange method
for solving QAPs.

Step1：A random solution q is made.

Step2： The objective function F(q) is calculated.

Step3： From all the elements, two elements s1 and s2 are
chosen. Then, locations assigned to s1 and s2 are
changed. Let us describe a provided solution as q′.

Step4： The objective function F(q′) is calculated.

Step5： If F(q) > F(q′), then let q = q′. Return to Step3．
When a solution was not improved, even if any two
elements s1 and s2 were chosen, we stop a solution
search.

Generally, the 2-exchange method is trapped into local
minima. Therefore, we used a chaotic dynamics to escape
from the local minima.

3. Proposed algorithm

The dynamics of the chaotic neuron i in the chaotic neu-
ral network[6] is described as follows:

ξi(t + 1) = keξi(t) +
m∑

j=1

vi ja j(t), (2)

ηi(t + 1) = k f ηi(t) +
l∑

j=1

wi jhi j(x j(t)), (3)

ζi(t + 1) = krζi(t) − αxi(t) + θi, (4)

xi(t + 1) = f {ξi(t + 1) + ηi(t + 1) + ζi(t + 1)} . (5)
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To control the 2-exchange method by the chaotic neural
network, we transformed Eqs.(2) ∼ (5) into Eqs.(6) ∼ (9).

ξ j(t + 1) = β∆i j(t), (6)

η j(t + 1) = k f η j(t) +
n∑

i=1,(i, j)

w ji(t)xi(t), (7)

ζ j(t + 1) = krζ j(t) − αx j(t) + (1 − kr)θ j, (8)

x j(t + 1) = f
{
ξ j(t + 1) + η j(t + 1) + ζ j(t + 1)

}
, (9)

where ξ j(t) is an external input to the chaotic neuron j, η j(t)
is a feedback input from other neurons in the network to the
chaotic neuron j, ζ j(t) is a refractoriness term of the chaotic
neuron j, and ∆i j(t) is a gain of the objective function when
we change p( j) to p(i) by the 2-exchange method, k f and
kr are decay constants, w ji(t) is a connection weight from
the chaotic neuron i to the chaotic neuron j at time t, α is
a scaling parameter of refractoriness effect, θ j is a thresh-
old of the chaotic neuron j, and f is a sigmoidal function
defined by f (y) = 1/(1 + e−y/ϵ).

In the conventional method[5], when the problem size
is n, the n × n chaotic neurons are prepared to represent
each (i, j) assignment. If the chaotic neuron (i, j) fires,
the element i is assigned to the location j. Although
this method[5] shows good performance, this method uses
much memory. On the other hand, in the proposed method,
we use n chaotic neurons for solving the problem of size n.
For this reason, we can reduce the memory consumption.
If the chaotic neuron i fires, we perform the 2-exchange
method for the element i. We explain the proposed algo-
rithm as follows.

Step1： Let i = 1.

Step2： Internal state values of all chaotic neurons except
the chaotic neuron i are updated asynchronously by
Eqs.(6) ∼ (8).

Step3： The output of the chaotic neuron j is calculated by
using Eq.(9).

Step4： If max
j
{x j(t + 1)} > 1/2, the chaotic neuron j fires

and the element p(i) and p( j) are exchanged by the
2-exchange method.

Step5： If i = n, this iteration is finished. Otherwise let
i = i + 1 and return to Step2.

4. The parameter tuning method

In this paper, we also introduce a parameter tuning
method for deciding connection weights. The connec-
tion weight wi j is controlled as follows. First, wmax =

max
i j
{Di jRp(i)p( j)}, the largest matrix element of the product

of the distance matrix D and the flow matrix R, is calcu-
lated. Then, the connection weight from the neuron j to
the neuron i is decided by Eq.(10):

wi j =
Di jRp(i)p( j)

wmax
. (10)

If the elements p(a) and p(b) are exchanged by the 2-
exchange method, the parameters wai,wbi,wia, and wib(i =
1, 2, . . . , n) are updated by Eq.(10).

5. Results

Table 1 shows the parameter values that we used for
solving each problem. In the numerical experiments, ∆i j(t)
is normalized by dMrM where dM = max

i j
{di j} and rM =

max
i j
{ri j}. We evaluated the performance of the proposed al-

gorithm using benchmark problems from QAPLIB[7]. To
evaluate the performance, we used the gap which is defined
by the following Eq.(11).

gap[%] =
found best solution − optimal solution

optimal solution
× 100. (11)

We calculated 10 trials for each parameter, and calculated
the average gap across trials.

Table 1: The parameters that we used for solving each
problem.

Problem α β θ k ϵ

Bur26a 5 1400000 0.05 variable 0.002
Bur26b 5 1400000 0.05 variable 0.002
Bur26c 5 1400000 0.05 variable 0.002
Bur26d 5 1400000 0.05 variable 0.002

Ste36a 5 10000 0.05 variable 0.002
Ste36b 1 10000 0.05 variable 0.001
Ste36c 1 10000000 0.05 variable 0.0001

Tai20b 5 variable 0.05 0.9 0.0001
Tai30b 2 variable 0.05 0.9 0.00005
Tai40b 1 variable 0.05 0.9 0.0001
Tai50b 1 variable 0.05 0.9 0.0001
Tai60b 1 variable 0.05 0.9 0.0001
Tai80b 1 variable 0.05 0.9 0.0001

Tai150b 10 variable 0.05 0.9 0.009
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Table 2 shows the best gaps for all parameters. Numerals
with bold faced types indicate the best gap. From Table
2, even though our method consumes less memories, we
can get almost equivalent performance to the conventional
method[5].

Table 2: Results of gaps[%] for (i) the conventional method
with the chaotic search(CS), and (ii) the proposed method.
The best parameters for each problem are shown in paren-
theses. The values of the parameter k are shown in
BurXXX and SteXXX, and the values of the parameter β
are shown in TaiXXXb.

Problem (i) Conventional method (ii) Proposed method
Bur26a 0.159 0.293 (0.9)
Bur26b 0.0814 0.111 (0.3)
Bur26c 0.0496 0.130 (0.1)
Bur26d 0.0234 0.080 (0.7)

Ste36a 5.65 3.86 (0.9)
Ste36b 12.7 8.29 (0.9)
Ste36c 4.40 3.68 (0.1)

Tai20b 1.80 3.14 (15000000)
Tai30b 2.33 1.91 (15000000)
Tai40b 3.70 4.58 (10000000)
Tai50b 2.21 3.96 (10000000)
Tai60b 2.52 2.48 (13000000)
Tai80b 2.88 2.08 (11000000)

Tai150b 2.44 1.46 (100000)

Figure 1 shows the change of the gap in case of chang-
ing k. In Fig.1, red line indicates the result of the proposed
algorithm, blue line indicates the result of the conven-
tional algorithm[5] with chaotic search (CS). The conven-
tional method has higher performance for any value of k in
Fig.1(a)(Bur26a). However, as shown in Fig.1(b)(Ste36a),
the proposed method finds better solutions than the con-
ventional method with chaotic search depending on k. In
Fig.1(c)(Ste36b), we find that the proposed method has
higher performance than the conventional method with
chaotic search for almost any value of k.

Figure 2 shows the temporal change of the internal state
of the chaotic neuron 1. From Fig.2, temporal behavior of
the chaotic neuron looks like chaotic.
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Figure 1: The result of the average gap for each k. Ordi-
nates show the gap and abscissas show values of the param-
eter k. The result of the proposed method is shown in red
lines and CS is shown in blue lines.
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Figure 2: The value of the internal state of the chaotic neu-
ron 1 for each times of update. Ordinates show the internal
state of the chaotic neuron 1 and abscissas show the times
of update of the chaotic neuron 1.

6. Conclusion

We proposed a new algorithm to find good approximate
solutions for QAP. We also introduced a parameter tuning
method to get good solutions for any kind of problems. In
comparison with the conventional algorithm[5], our algo-
rithm can get equivalent performance. However our al-
gorithm has an advantage, because the number of neuron
is reduced, which means that, we can reduce the mem-
ory consumption. It is an important future work to intro-
duce chaotic simulated annealing into the proposed method
and compare its performance with the conventional chaotic
simulated annealing method[5].

Acknowledgment

The authors would like to thank Mr. S. Ogawa and AGS
Corp. for their kind encouragements on this research. The
research of Y.S. is supported by Grant-in-Aid for Research
Activity Start-up (No. 26880020) from JSPS. The research
of K.F. was partially supported by Grant-in-Aid for Chal-
lenging Exploratory Research (No 15K12137) from MEXT
of Japan. The research of T.I. was partially supported by
Grant-in-Aid for Exploratory Research (No. 24650116)
from JSPS and by Grant-in-Aid for Scientific Research (C)
(Generative Research Fields) (No.15KT0112) from JSPS.

References

[1] F. Glover, “Tabu search-part I,” ORSA Journal on
computing, Vol.1, pp.190–206, 1989.

[2] F. Glover, “Tabu search-part II,” ORSA Journal on
computing, Vol.2, pp.4–32, 1990.

[3] D.M. Tate and A.E. Smith, “A genetic approach to the
quadratic assignment problem,” Computers & Opera-
tions Research, Vol.22, pp.73–83, 1995.

[4] M. Hasegawa, T. Ikeguchi, and K. Aihara, “Solv-
ing large scale traveling salesman problems by
chaotic neurodynamics,” Neural Networks, Vol.15
(2), pp.271–283, 2002.

[5] M. Hasegawa, T. Ikeguchi, K. Aihara and K. Itoh, “A
novel chaotic search for quadratic assignment prob-
lems,” European Journal of Operational Research,
vol.139, pp.543–556, 2002.

[6] K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural
networks,” Physics Letters A, Vol.144, pp.333–340,
1990.

[7] “QAPLIB - A quadratic assignment problem library,”
URL:http://www.opt.math.tu-graz.ac.at/qaplib/

- 613 -


	Navigation Page
	Session at a glance

