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Abstract—Structuring data is important in information
retrieval, and knowledge graphs are used as structured
knowledge representations. As knowledge graphs become
larger, it becomes more important to complement missing
or erroneous information. Multi-modal information such as
images and attribute values are useful as supplemental in-
formation. For this reason, there has been a lot of research
on entity alignment, which finds entities of the same con-
cept in different multi-modal knowledge graphs. However,
if the supplemental information itself is missing or incor-
rect, the addition of that information will negatively affect
information retrieval. If we can quantify the usefulness of
the information for retrieval as a degree of importance, the
influence of unimportant supplementary information can
be reduced. In this study, we proposed a method that ex-
presses the importance of each piece of information by us-
ing a probability distribution. The proposed method out-
performed multi-modal entity alignment in the entity align-
ment task of two multi-modal knowledge graphs.

1. Introduction

A knowledge graph is a data structure that represents
human knowledge as a directed graph with edges repre-
senting relationships and nodes representing entities. It
is used in tasks such as question answering, recommen-
dation systems, and information retrieval. As datasets in
machine learning become larger and larger, it is becoming
increasingly important to integrate information from mul-
tiple knowledge graphs to fill in missing information in a
single knowledge graph [1]. However, since the purposes
of creating knowledge graphs are diverse, and the domains
and languages used are different, there are gaps in the de-
scription and graph structure of concepts that refer to the
same object in different knowledge graphs. The task of
dealing with these gaps and linking entities that refer to the
same object across different knowledge graphs is called en-
tity alignment.

To improve the accuracy of entity alignment, multi-
modal information could be used. A knowledge graph with
images, numerical information, descriptions, and other
information representing entities is called a multi-modal

ORCID iDs Kenta Hama: 0000-0002-2338-9229, Takashi Matsub-
ara: 0000-0003-0642-4800

knowledge graph (MMKG). However, if multi-modal in-
formation is automatically collected for general knowl-
edge graphs, there is a risk that noisy information will
be added, degrading the performance of entity alignment.
If unimportant information can be automatically removed
during model training, the effect of noise can be reduced.
MMEA [4] (multi-modal entity alignment) is a typical
embedding-based method for multi-modal entity align-
ment. It is generic and scalable because it learns and in-
tegrates each embedding point independently using infor-
mation from each modal.

However, it does not take into account the importance of
information for each modal when integrating information
In this study, we propose a new common-space learning
method for multi-modal entity alignment that transforms
the information of each modal into a multivariate normal
distribution instead of a point in space, so that the impor-
tance of information can be expressed as the size of vari-
ance of the distribution. The proposed method achieves
accuracy significantly better than MMEA on two datasets
of MMKG [5], which is a common evaluation dataset for
multi-modal entity alignment.

2. Related Work

A knowledge graph (KG) is structured data consisting
of an entity representing a concept and a relation between
two entities. The MMKG is an extension that each entity
in the KG has multi-modal information such as images and
attributes. Entities are used in machine learning methods
such as deep learning, so they are often converted to a dis-
tributed representation that can compute the similarity be-
tween entities [2]. This is called knowledge graph embed-
ding.

MMKG has been studied to improve the quality of rep-
resentation by using information from other modalities for
embedding. IKRL [6] (image-embodied knowledge repre-
sentation learning) integrates knowledge graph embedding
with features and attention mechanisms obtained from im-
ages of entities. MKBE [7] (multi-modal knowledge base
embeddings) also simultaneously uses numerical and cate-
gorical information as well as relations and images. These
methods use information from other modalities as supple-
mentary information for embedded representation acquisi-
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tion. For entity alignment, MMEA is a generic and scalable
model: it learns the relational information between enti-
ties, the image information of entities, and the numerical
information as different embedding representations, and in-
tegrates the embeddings of each modality by bringing them
closer to one point in the common space. Since the repre-
sentation of each modality is obtained independently and
then integrated, it is easy to add modal information and
transfer learned models. However, because MMEA treats
the information of each modality equivalently, the infor-
mation of a modality that is not important for an entity can
negatively affect the embedding. Therefore, it is necessary
to learn the knowledge representation while weighting the
information of each modality according to its importance.

3. Proposed Method

In this study, entities are transformed into a multivari-
ate normal distribution instead of a point in space in order
to be able to express the uncertainty of each modal em-
bedding. In this section, we explain the terminology used
in this paper, and then describe in detail how to learn the
representation by probability distribution from each modal
information. Finally, we describe common-space learning,
which integrates each embedding using uncertainty.

3.1. Definitions of Terms

Denote the MMKG as KG = (Ê,R, I,N, X,Y,Z). where
Ê,R,I,N are the sets of entities, relations, images, and num-
bers, and X,Y ,Z are the sets of triples of relations, entity-
image pairs, and numbers, respectively.

Entity alignment is the task of matching entities that
describe the same thing in the real world from different
knowledge graphs. Let KG1 = (Ê1,R1, I1,N1, X1,Y1,Z1)
and KG2 = (Ê2,R2, I2,N2, X2,Y2,Z2) be two different KGs,
then H = {(e1, e2) | e1 ∈ Ê1, e2 ∈ Ê2} denotes the set of
pairs of entities that describe the same thing in the whole
knowledge graph.

3.2. Probability Distribution Embedding

3.2.1. Relational Distribution

A triple consisting of two entities and a relation between
them is called a fact and is represented as (h, r, t) ∈ X.
In the proposed method, (h, r, t) ∈ X are represented by
N(µh,Σh),N(µr,Σr) and N(µt,Σt), where are multivariate
normal distributions.

Similarly to [8], we define the similarity score between
N(µt,Σt)−N(µh,Σh) andN(µr,Σr) using Kullback-Leibler
(KL)-divergence as follows:

frel(h, r, t) = −DKL(N(µh − µt,Σh − Σt),N(µr,Σr)). (1)

The KL-divergence between two multivariate normal dis-
tributions can be calculated as follows:

DKL(N(µ1,Σ1),N(µ2,Σ2))

=

∫
x∈Rk1

N(x | µ2,Σ2) log
N(x | µ1,Σ1)
N(x | µ2,Σ2)

dx

=
1
2
{tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

− log
det(Σ1)
det(Σ2)

− k1},

where tr(Σ) are the trace of the covariance matrix Σ, Σ−1

are the inverse of Σ, and k1 is the dimension of entity in the
embedding space. In this study, the covariance matrix Σ is
assumed to be a diagonal matrix to simplify these calcula-
tions.

The loss function for learning the relation embedding is
defined by using the margin γ as follows:

Lrel =
∑
τ+∈D+

∑
τ−∈D−

max(0, γ − frel(τ+) + frel(τ−)). (2)

where D+ and D− are the sets of positive and negative ex-
amples of the fact, respectively. The positive examples are
given as τ = (h, r, t) ∈ X at training time, but in this study,
as in [4], X is extended to D+ using an exchange strat-
egy. The exchange strategy is that given (h, r, t) ∈ X, if
(h, h̄) ∈ H, then (h̄, r, t) is also added to D+. This is done
for t as well. Once D+ is obtained, the set of negative ex-
amples, D−, is generated with the following definition.

D− =

{(h′, r, t) | h′ ∈ Ê ∧ h′ , h ∧ (h, r, t) ∈ D+ ∧ (h′, r, t) < D+}

∪ {(h, r, t′) | t′ ∈ Ê ∧ t′ , t ∧ (h, r, t) ∈ D+ ∧ (h, r, t′) < D+}

3.2.2. Visual Distribution

Each entity is given image information represented as
(e(i), i) ∈ Y . From the image given for an entity, we extract
a 4096 dimensional vector before the classification layer
as a feature using VGG16, which has already been trained
on ImageNet. The proposed method transforms e(i) into a
normal distribution N(µe(i) ,Σe(i) ). We make a distribution
N(µi,Σi) from feature i, the output of VGG16. The mean
vector is µi = tanh(M1i), where M1 is a 4096 × d matrix
and d is the dimension of the mean vector of the entity. The
Σi is a diagonal matrix with all elements fixed at 0.5. For
(e(i), i) ∈ Y given as pairs, we define the following score
functions:

fvis(e(i), i) = −DKL(N(µe(i) ,Σe(i) ),N(µi,Σi)). (3)

The loss function for embedding image information is de-
fined as follows:

Lvis =
∑

(e(i),i)∈Y

log(1 + exp(−fvis(e(i), i))). (4)
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3.2.3. Numerical Distribution

A triple of numeric information is represented as
(e(n), a, n(e(n), a)) ∈ Z, where a is the attribute name and
n(e(n), a) is its numerical value. Here, the numerical values
are real numbers, so they are converted into a distributed
representation using the radial basis function (RBF) as fol-
lows:

ϕ
(
n(e(n), ai)

)
= exp

−(n(e(n), ai) − ci)2

σ2
i

 , (5)

where ci is the radial kernel center vector and σi is the
variance vector. The numerical values are normalized by
attribute name.

The proposed method transforms e(n) into the nor-
mal distribution N(µe(n) ,Σe(n) ). We make a distribution
N(µn,Σn) from (a, n(e(n), a)). The mean vector is µn =

tanh(vec(CNN(tanh(M2)))W) where vec(·) denotes the
projection, CNN(·) is the l-layer convolutional layer, and
W means a fully-connected layer. M2 is a matrix of 2 × d,
which is a concatenation of a, an embedding of attribute
names, and ϕ(n(e(n),ai)), a distributed representation of num-
bers. Σi is a diagonal matrix with all elements fixed at 0.5.
For (e(n), a, n) ∈ Z, we define the following score function:

fnum(e(n), a, n) = −DKL(N(µe(n) ,Σe(n) ),N(µn,Σn)). (6)

The loss function of the entire numerical information em-
bedding is as follows:

Lnum =
∑

(e(n),a,n)∈Z

log(1 + exp(−fnum(e(n), a, n))). (7)

3.2.4. Common Space Learning

In the case of the proposed method, each modal informa-
tion is represented by a multivariate normal distribution, so
the loss function to be integrated in the common space is
defined as follows:

Lcsl(e, e(r), e(i), e(n)) =
DKL(N(µe,Σe),N(µe(r) ,Σe(r) ))
+ DKL(N(µe,Σe),N(µe(i) ,Σe(i) ))
+ DKL(N(µe,Σe),N(µe(n) ,Σe(n) )),

(8)

where e is an entity in the common space and N(µe,Σe) is
its normal distribution embedding representation. Finally,
to bring corresponding entities closer together across dif-
ferent knowledge graphs, we minimize the following loss
function minimize the following loss function

Lac(e1, e2) = DKL(N(µe1 ,Σe1 ),N(µe2 ,Σe2 )) (9)

The defined Lrel, Lvis, Lnum, Lcsl, Lac are trained by itera-
tively updating the parameters one epoch at a time as in
MMEA.

4. Experiment

4.1. Dataset

In this study, we used two MMKG datasets, FB15K-
DB15K and FB15K-YAGO15K, created by [5] et al.
FB15K is a dataset commonly used in knowledge graph
completion, and the entities in FB 15K entities and re-
lated entities were selected from DBpedia and YAGO, and
DB15K and YAGO15K were created. The datasets used in
this study are the same as those used in MMEA, and the
training dataset was randomly split 5 times into 20%, 50%,
and 80% splits, and the comparison between the models
was based on the mean value of the training evaluation re-
sults in each dataset.

4.2. Evaluation Metrics

Hits@n, MRR (mean reciprocal rank), and MR (mean
rank), which are commonly used in ranking evaluation,
were used as evaluation indices for entity alignment.
Hits@n is the percentage of correct entities within the top n
of the ranking obtained by the similarity calculation, MR is
the average of the ranks of correct entities, and MRR is the
average of the inverse of the ranks of the correct entities.
Therefore, the higher Hits@n and MRR and the lower MR,
the better the performance.

4.3. Experimental Settings

In this study, OpenEA [13] was used for implementa-
tion. All models used in the comparison experiments used
the default training settings of OpenEA, except MMEA,
which was trained similarly to the training parameter set-
tings in [4]. Each model used cross-domain similarity local
scaling [14] during the evaluation.

In order to stabilize the learning process, a two-stage
learning process was used: the mean of the normal dis-
tribution was learned first, and then the parameter for vari-
ance was unfixed and relearned. To avoid divergence of the
variance values during learning, the range of [Cmin,Cmax] =
[0.5, 50] was used. The initial value of all variances was set
to 0.5.

4.4. Experimental Results

The results of the evaluation of each model when the
training data is divided by 20 percent of the total are shown
in Table 1. Compared to the models using only relational
information, the models using relational + numerical and
relational + numerical + visual information are more accu-
rate. The proposed method achieves higher accuracy than
MMEA.

The evaluation results of MMEA and the proposed
method when the training data is split at 20, 50, and 80%
are shown in Table 2. It can be seen that the proposed
method outperforms MMEA for all dataset splits.
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Table 1: Evaluation results for each model in FB15K-DB15K and FB15K-YAGO15K when the training dataset is divided
into 20% of the total dataset. R, N, and V stand for relational, numerical, and visual, respectively.

Modal Model FB15K-DB15K FB15K-YAGO15K

H@1 H@5 H@10 MR MRR H@1 H@5 H@10 MR MRR

R

MtransE [3] 0.68 2.72 5.02 580.3 0.025 0.40 1.80 3.30 651.1 0.017
IPtransE [9] 13.69 32.47 42.32 143.4 0.231 11.24 26.31 34.62 181.4 0.191

TransE 23.21 41.26 49.85 122.5 0.320 16.51 30.17 37.20 178.2 0.237
SEA [10] 29.13 50.43 60.02 79.3 0.394 25.67 44.40 53.95 84.8 0.351

R+N GCN [11] 6.73 16.80 23.14 357.0 0.123 4.48 11.61 16.53 420.9 0.087
IMUSE [12] 35.14 57.03 66.13 63.4 0.455 29.65 48.47 56.74 73.8 0.388

R+N+V MMEA 41.28 62.52 70.58 53.7 0.513 37.05 56.22 64.59 52.9 0.464
proposed 44.74 66.30 74.14 41.2 0.548 39.97 60.50 68.88 42.5 0.497

Table 2: Evaluation results of MMEA and the proposed
method when the training dataset is divided into 20%, 50%,
and 80% of the total dataset.

Split Model FB-DB FB-YAGO

H@10 MRR H@10 MRR

20% MMEA 70.58 0.513 64.59 0.464
proposed 74.14 0.548 68.88 0.497

50% MMEA 81.28 0.646 76.87 0.606
proposed 84.93 0.689 81.94 0.657

80% MMEA 89.11 0.749 86.80 0.711
proposed 91.10 0.776 89.22 0.750

5. Conclusion

In this paper, we proposed a novel method of multi-
modal KG embedding that uses uncertainty to evaluate the
importance of supplementary information. The proposed
method weights the information of each modality accord-
ing to its importance and reduces the effects of missing
or erroneous KGs. Experimental results show that the
proposed method significantly outperformed the baseline
model on two benchmark datasets for multi-modal entity
alignment. This indicates that weighting important infor-
mation is effective in information retrieval.
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