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Abstract—An echo state network (ESN), consisting of
an input layer, reservoir, and output layer, is a recurrent
neural network (RNN) model with higher learning effi-
ciency than other mainstream RNNs represented by gated
RNNs. Recent various studies have attempted to input
multidimensional data to an ESN, although the perfor-
mance of ESN under multidimensional inputs deteriorates.
To further proceed with this development, it is necessary
to investigate the spatiotemporal response characteristics
of ESNs under multidimensional inputs. We focused on
the synchrony of states of reservoir neurons and investi-
gated the ESN characteristics under multidimensional in-
puts using the measure of mean correlation coefficient of
pairs among all reservoir neuron states and existing mea-
sures such as accuracy, memory performance, and maxi-
mum Lyapunov exponent (MLE). The results showed that
in the case of low-dimensional inputs, the maximum mem-
ory performance is achieved as the MLE nears zero. In the
case of high-dimensional inputs, maximum memory per-
formance is achieved when the state exhibits less than zero
MLE and minimum synchronization. An approach focus-
ing on synchronization and the MLE contributes to the de-
termination of the best ESN characteristics to achieve the
maximized ESN performance under multidimensional in-
puts.

1. Introduction

Reservoir computing (RC) [1–3] is becoming a widely
accepted approach for recurrent neural network (RNN)
models with higher learning efficiency (i.e., fewer learning
data and less learning time) than other mainstream RNNs
represented by gated RNNs (i.e., long short-term memo-
ries (LSTMs) [4] and gated recurrent units (GRUs) [4]).
Its high learning efficiency is achieved by two components
of RC: a reservoir as the efficient feature extractor by spa-
tiotemporal responses without learning and a readout as the
simple transformer of the response into the desired out-
put. Therefore, RC models have few learning parameters
and use simple learning methods. Recent studies show
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that RC can be adopted to dynamic systems, which involve
rapidly changing characteristics by virtue of high learning
efficiency [3].

One typical RC model is the echo state network (ESN)
[1, 2, 5, 6] (see Fig.1). It has an RNN with randomly fixed
synaptic weights as the reservoir, which has spatial dy-
namics corresponding to the temporal input signal, and a
linear transformer as the readout which can be learned by
linear regression. This network architecture achieves high
learning efficiency. However, the performance of an ESN
is highly dependent on its hyperparameters, such as reser-
voir size (number of neurons in the reservoir) [2], spectral
radius [2, 5, 6], and leaking rate [2]. Recent studies have
shown appropriate ESN design methods [2, 7], while some
aspects of them are empirical and still unclear and contro-
versial. Carrol insisted that the edge of chaos for maximiz-
ing the ESN performance, which is conventionally defined
as zero maximum Lyapunov exponent (MLE), must be re-
defined [8].

Various studies have attempted to input multidimen-
sional data to an ESN, although its performance under
multidimensional inputs deteriorates. Tong et al. used
fixed-weight convolutional neural networks to encode four-
dimensional time-series data as extracted low-dimensional
features from images; these time-series data were subse-
quently input to an ESN [9]. Arrieta et al. transformed im-
ages into one-dimensional time-series data and input them
into a four-layer deep ESN [10]. Subsequently, Arrieta
et al. studied video input to ESNs, in which pixel data
were directly input as multidimensional input to a four-
layer deep ESN [10]. Additionally, the development of
other ESN architectures, which maintain performance even
under such inputs, is rapidly proceeding [11, 12].

To further proceed with this development, it is necessary
to investigate the spatiotemporal response characteristics of
ESNs under multidimensional inputs. In this context, this
study’s purpose is to reveal the character of the response
of ESNs under multidimensional inputs by focusing on the
synchrony of states of reservoir neurons. In this paper, we
investigated the leaky integrator (LI) model, a type of ESN,
and varied its spectral radius by using four measures: ac-
curacy, memory performance, MLE, and correlation coef-
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Figure 1: Overview of the echo state network (ESN) architecture.
It consists of an input layer, a reservoir, and an output
layer (readout).

ficients between neuron states as a measure of synchrony.

2. Model and Method

2.1. Echo State Network

2.1.1. ESN architecture

ESN architecture consists of three parts: an input layer, a
reservoir, and an output layer (readout), as shown in Fig.1.
In this paper, we used the LI model, which is an ESN with
a mechanism to mix past states in leaking rate, α [6]. By
that mechanism, the LI model can adjust to match the tem-
poral scales between the input and reservoir dynamics. The
neural dynamics update equation for the LI model reservoir
when the time step is t = 1, 2, · · · is given by

(1)x(t + 1) = (1 − α)x(t) + α · f (W in[u(t); b] +Wx(t)).

The output is given by

(2)y(t) = Wout[x(t); u(t); b].

Here, [·; ·] is a vector combination. u(t) ∈ RNu is the input,
y(t) ∈ RNy is the output, and x(t) ∈ RNx is the neuron state.
b is the bias applied to the input, f (·) is the activation func-
tion, which is generally tanh, and α (0 ≤ α ≤ 1) is the leak-
ing rate. The input weight W in ∈ RNx×(Nu+1) and the recur-
rence weight W ∈ RNx×Nx are fixed with random weights.
Exclusively, The output weight Wout ∈ RNy×(Nx+Nu+1) is ad-
justed by learning.

2.1.2. Learning method

The ESN’s learning method is ridge regression, a batch-
learning method for the output weights of the readout. As
the learning period is from ts to te, the batch size is defined
T = te − ts. the output weights Wout is obtained by

(3)Wout = ((XT X + βI)−1XT Yd)T ,

X = {[x(ts); u(ts); b], · · · , [x(te); u(te); b]}T ,

Yd = {yd(ts), · · · , yd(te)}T ,

where yd(t) ∈ RNy is the teacher signal, I is a identity matrix
of size Nx + Nu + 1, β is the regularization factor, and X ∈
RT×(Nx+Nu+1),Yd ∈ RT×Ny .

2.1.3. Parameter settings

The two weights of the ESN, W in and W, are deter-
mined by the following procedure. The input weight ma-
trix, W in, is determined with each element as a uniformly
distributed random number in the range [−Scalein,Scalein].
However, the weight applied to the bias is in the positive
range of [0,Scalein]. The recurrence weight matrix, W,
is determined by the following process and two parame-
ters: the sparsity rate, s (0 < s ≤ 1), and the spectral ra-
dius, r (0 < r). First, a uniform matrix with zero mean,
W0 ∈ RNx×Nx , is prepared. Next, W0 is made sparse by
replacing its elements with zeros at the sparsity rate, s. Fi-
nally, W is obtained from W0 by

(4)W = r
W0

ρ(W0)
,

where ρ(W0) is the maximum absolute value of eigenvalues
of W0.

2.2. Tasks of prediction time-series

The task used in the investigation is a time-series pre-
diction task for random time-series delayed output (hence-
forth, the random delayed output task) [13]. The input sig-
nal at the t-time-step,u(t), is an Nu-dimensional vector of
uniformly distributed random numbers in the range [−1, 1],
and the output signal is yd(t) = u(t − τ). Here, τ is the de-
lay between input and output signal; the larger τ required,
the greater the memory capacity to solve, and the input and
output dimensions are the same: (Nu = Ny = N).

2.3. Evaluation method

We used four measures for our experiments: logarith-
mic normalized root mean squared error (log-NRMSE) [2]
and memory capacity (MC) [13, 14] for ESN performance,
MLE as the degree of chaotic behaviors [15], and correla-
tion coefficient with delay between neurons as the degree
of synchronization.

Table 1 lists the parameter settings for the experiment.

3. Results

We set experiment parameters as shown in Table 1, and
investigated the log-NRMSE, MC, MLE, and correlation
coefficient through changing the spectral radius under mul-
tidimensional inputs. Each value in the experimental re-
sults is the average of 10 samples. Figure 2 shows typical
scatter plots among the MC, MLE, and correlation coeffi-
cient under one-dimensional inputs (corresponding to parts
(a) and (b)) and 50-dimensional inputs (corresponding to
parts (c) and (d)) in the case with delay (τ = 0) for corre-
lation coefficient (shown in (a) and (c)) and the case with
delay (τ = 20) (shown in (b) and (d)).

Under the one-dimensional inputs, the MC is maximized
where the MLE is 0 (≈ −0.05) with a spectral radius near
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Table 1: Parameter settings for the experiment.

Parameter Value
Echo State Network
input weight scale Scalein 0.1
spectral radius r 0.05 to 2

in increments of 0.05
leaking rate α 1
sparsity s 0
reservoir size Nx 1000
regularization factor β 0.2
Task
input/output dimension 1, 2, 3, 4, 5, 10,

20, 30, 50, 75, 100,
125, 150, 200

τ for log-NRMSE 5, 20
Evaluation method
delay for correlation coefficient 0, 20

1 (0.97) (see (a) and (c) in Fig.2), which corresponds to
findings of the conventional edge of chaos (MLE = 0). The
point of the peak MC not only has a MLE close to 0, but
also a small correlation coefficient.

Under 50-dimensional inputs, the memory capacity is
maximized at a smaller spectral radius (0.92), i.e., where
the MLE is less than 0 (≈ −0.2) and the correlation coef-
ficient at delay = 20 is the lowest (see (d) in Fig.2). The
correlation coefficient for delay = 0 shows a slight U-shape
around the MLE 0 (see (c) in Fig.2). In contrast, the corre-
lation coefficient for delay = 20 (see (d) in Fig.2) shows a
relatively particular U-shape with the slight negative MLE
(≈ −0.18) and the maximum peak of MC.

Similarly, we obtained results for log-NRMSE, shown
as scatter plots with the same vertical and horizontal axes
but the colors as log-NRMSE. The minimum log-NRMSE
appeared to be independent of the correlation coefficient;
however, it is dependent on the input dimension and task τ,
and a larger spectral radius is optimal when they become
larger.

4. Discussions and Conclusions

In this study, to reveal the spatiotemporal characteris-
tics of the response of ESNs under multidimensional in-
puts, we gave ESNs tasks with low-dimensional to mul-
tidimensional inputs and investigated their accuracy (as
log-NRMSE), memory performance (as MC), MLE, and
synchronization (as correlation coefficients). The results
showed that in the case of low-dimensional inputs, the
maximum memory performance is at the MLE of zero.
In the case of high-dimensional inputs, maximum mem-
ory performance is achieved at a slightly negative MLE
< 0 and minimum synchronization. Moreover, the max-
imum memory performance clearly depends on the syn-

chronization of reservoir neuron states. Conventionally, as
a measure of maximizing ESN performance, the MLE of
0 has been considered as the edge of chaos [7], but Car-
roll showed the need for more complete measures to de-
termine ESN performance [8]. Furthermore, asynchrony is
known to play an important role in maintaining complex
responses [16]. The high performances of ESN obtained
in this study under multidimensional inputs are congruent
with these findings. In conclusion, although more detailed
evaluations under various kinds of multidimensional inputs
are needed, the approach focusing on synchronization and
MLE contributes to the determination of ESN character-
istics to achieve the maximized ESN performance under
multidimensional inputs.
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Figure 2: Scatter plots among memory capacity (as memory performance), MLE, and correlation coefficient (as synchronization) of the
echo state network under one-dimensional inputs ((a) and (b)) and 50-dimensional inputs ((c) and (d)) in the case with delay
(τ = 0) for correlation coefficient ((a) and (c)) and the case with delay (τ = 20) ((b) and (d)) (see Section 3). The vertical
and horizontal axes show the correlation coefficient and MLE, respectively, and the colors represent memory capacity. The
results show that in the case of one-dimensional inputs, the maximum memory capacity is at the MLE near 0. In the case
of 50-dimensional inputs, the maximum memory capacity is at the MLE < 0 and minimum correlation coefficient. The
“Bottom” note indicates the correlation coefficient, the “Max” and “Min” notes indicate the maximum and minimum MC,
and the numbers following the notes are the corresponding spectral radius r.
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