
Design of a Processor System for Particle Swarm Optimizers

Hidehiro Nakano† and Arata Miyauchi†

†Department of Computer Science, Tokyo City University
1–28–1, Tamazutsumi, Setagaya-ku, Tokyo, 158–8557 Japan

Email: {nakano, miyauchi}@ic.cs.tcu.ac.jp

Abstract—In this paper, a processor which realizes the
parallel processing of Particle Swarm Optimizer (PSO) is
proposed. As the main operations in PSO, there are initial-
ization of particles, calculation of evaluation values, update
of the best solution information, update of velocity and po-
sition vectors, and so on. In our processor, these operations
are executed by parallel circuits. Also, in order to adapt
various objective functions, the evaluation values are cal-
culated by software program using a RISC-type processor.
Performing the experiments, the results for the evaluation
of the circuit scale by logic synthesis and for the measure-
ment of the clock cycles by HDL simulator are shown.

1. Introduction

The Particle Swarm Optimizer (PSO) is one of optimiza-
tion algorithms, which is classified into swarm intelligence
[1]. In PSO, particles located in a solution space share the
solution information to each other, and find a design vari-
able vector as a solution which minimizes or maximizes an
objective function. Each particle has a velocity vector and a
position vector (corresponding to a design variable vector),
and memorizes the best solution information in its search
process. Also, all the particles share the best solution in-
formation in their search process to each other. Based on
the information, each particle repeats to update the veloc-
ity and position vectors and the best solution information.
PSO can be executed by simple arithmetic operations, and
can efficiently provide good solution candidates.

On the other hand, recently, engineering systems have
become large-scale and complex. Since the solution space
can be significantly large in the design problems for these
systems, it is difficult to search acceptable solutions by us-
ing the small number of particles. Therefore, this paper
considers effective search algorithms by using the large
number of particles. The basic PSO with the large num-
ber of particles can easily trap into undesirable local solu-
tions. However, it is possible to overcome such a problem
by introducing the following approaches: (1) the PSO al-
gorithms with network topologies [2]-[7], and (2) the PSO
algorithms with multi-swarm structure [8]-[11].

In this paper, the parallel processing of PSO is consid-
ered. The operations to each particle are independent ex-
cept for sharing the best solution information. Also, the
operations to each component in velocity and position vec-
tors are independent. That is, it can be said that the oper-

ations in PSO have significantly high parallelism. Then, a
processor which realizes the parallel processing of PSO is
proposed. In our processor, the high-speed execution of the
PSO algorithm is possible. Performing the experiments,
the results for the evaluation of the circuit scale by logic
synthesis and for the measurement of the clock cycles by
HDL simulator are shown.

2. Basic PSO algorithm

In this section, the basic PSO algorithm is explained.
Let us consider that an optimization problem with D de-
sign variables is solved by N particles. At the search
iteration t, each particle (the ith particle) has a velocity
vector vt

i = (vt
i1, v

t
i2, · · · , vt

iD) and a position vector xt
i =

(xt
i1, x

t
i2, · · · , xt

iD), and memorizes the personal best solu-
tion (Pbest) pt

i = (pt
i1, p

t
i2, · · · , pt

iD) in its search process.
Also, all the particles share the global best solution (Gbest)
gt

i = (gt
i1, g

t
i2, · · · , gt

iD) in their search process to each other.
The basic PSO algorithm for minimizing an objective

function f (x) is described by the followings.

Step 0: Preparation
Set the total number of particles N, the parameters of
the particles (w, c1, c2), and the maximum search iter-
ation tmax.

Step 1: Initialization
Let t = 1. Initialize velocity vector v1

i and position
vector x1

i for all i by random numbers. Initialize Pbest
p1

i for all i and initialize Gbest g1 by the following
equations.

p1
i j = x1

i j, i = 1 ∼ N, j = 1 ∼ D (1)

k = arg min
i

f (p1
i ) (2)

g1
j = p1

k j, j = 1 ∼ D (3)

Step 2: Update velocity and position vectors
Update the velocity vector vt+1

i and the position vector
xt+1

i by the following equations.

vt+1
i j = wvt

i j + c1r1(pt
i j − xt

i j) + c2r2(gt
i j − xt

i j)(4)
i = 1 ∼ N, j = 1 ∼ D

xt+1
i j = xt

i j + vt+1
i j (5)

i = 1 ∼ N, j = 1 ∼ D

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 606 -



�����

�����	
��

�����	
���

�����	
���

����

����

	
�����

��������

��
��

�

�

�

Figure 1: The structure of particle modules

where r1 and r2 in Eq. (4) are the uniform random
numbers in [0, 1].

Step 3: Update the best solutions
Update Pbest pt+1

i and Gbest gt+1 by the following
equations.

pt+1
i j =

{
xt+1

i j , if f (xt+1
i ) < f (pt

i)
pt

i j, otherwise (6)

i = 1 ∼ N, j = 1 ∼ D

k = arg min
i

f (pt+1
i ) (7)

gt+1
j = pt+1

k j (8)
j = 1 ∼ D

Step 4: Judgment of termination
If t , tmax, let t = t + 1 and go to Step 2.

PSO can be executed by the simple arithmetic opera-
tions, and can efficiently provide good solution candidates
for various optimization problems.

It should be noted that the operations in PSO have sig-
nificantly high parallelism. The operations of vt+1

i and xt+1
i

in Step 2, and of pt+1
i in Step 3 are independent for i and

j. The operations of v1
i , x1

i and p1
i in Step 1 are also inde-

pendent for i and j. In addition, the operations of f (xt+1
i )

and f (pt
i) are independent for i, and the operations of gt+1

are independent for j. That is, the operations in PSO have
significantly high parallelism. By implementing multiple
functional units in parallel, the high-speed execution of the
PSO algorithm is possible.

3. Design of a PSO processor

Figure 1 shows the structure of the particle modules. The
operations in this processor is based on the single precision
floating point number. In the figure, “Particle 1” ∼ “Par-
ticle N” are the particle modules, and “Swarm” is the hub

���

���
�����	
��

�����	
�

�����	
��

�����

��

�����

�� �

Figure 2: “Swarm” module

����

�
�
�

�
�
�

�����
�����

��
��

�����

��

Figure 4: “Pbest” moudule

module to connect all the particle modules. Each particle
module has the lower layer modules which correspond to
the PSO algorithm explained in the previous section. Each
particle module can operate in parallel; the parallel pro-
cessing can be easily realized.

Figure 2 shows the block diagram of the “Swarm” mod-
ule. In the figure, “Min” and “Max” are the minimum and
maximum value registers, respectively. They are used in
the initialization process. “Gbest” is the module which up-
dates Gbest gt. This module outputs the values g1 (=gt)
and f(g1) (= f (gt)).

Figure 3 shows the block diagram of the “Init” module.
In the figure, “Mseq” is the M-sequence generator to be
used as a pseudo-random number generator, “x/v mem” is
the memory module for xt

i or vt
i, and “dim” is the counter

which holds the design variable index j. “Init” module
generates random numbers and stores these values in “x/v
mem” as follows:

r1 ← [1, 2) ; +1.rrr · · · r(2) × 20

r2 ← [0, 1) ; r1 − 1
r3 ← [0,Max −Min) ; r2 × (Max −Min)

mem ← [Min,Max) ; r3 −Min

where rrr · · · r is the 23-bit random significand value. Since
this module has the pipeline structure for the design vari-
able index j, the clock cycles of all the operations are pro-
portional to the number of design variables D.

Figure 4 shows the block diagram of the “Pbest” module.

- 607 -



�������
�

���
���

���

����� �� �� ��� �	�

�

�

� �
���

�
	

������ ������ ������ �����	

Figure 3: “Init” module

�����

�

�

� �
���

�
�

��	��

�����

����

�
�
�

��
�
�
�

	���

	


��	
�

	�

��	��

Figure 5: “Gbest” module

The values f(x1) (= f (xt+1
i )) and f(p0) (= f (pt

i)) are com-
pared. Then, the values f(p1) (= f (pt+1

i )) and p1 (=pt+1
i )

are output.
Figure 5 shows the block diagram of the “Gbest” mod-

ule. In the figure, “num” is the counter which holds the par-
ticle index i. The values f(g0) (= f (gt)) and f(p1) (= f (pt+1

i ))
are compared. Then, the values f(g1) (= f (gt+1

i )) and g1
(=gt+1

i ) are output.
Figure 6 shows the block diagram of the “Position” mod-

ule. From the “v mem” and “x mem”, each component of
the velocity and position vectors are sequentially read out
by using “dim” as the memory address, and these values
are added. Then, the added values are sequentially output.
Note that the boundary value Min or Max is output if an
added value exceeds the boundary.

The “Velocity” module is desined by the 4-stage pipeline
structure for the design variable index j, as shown in Ta-
ble 1. By the above operations, the same results by using
Eq. (4) are obtained. Since this module has the pipeline

�

�

� �
���

�
�

���

���

���
����

�������

���

�
�
�

�

Figure 6: “Position” module

Table 1: Pipeline stage in the “Velocity” module
Stage 1: k11 = w · vt

i j, k12 = c1 · r1, k13 = c2 · r2

k14 = pt
i j − xt

i j, k15 = gt
j − xt

i j
Stage 2: k21 = k12 · k14, k22 = k13 · k15

Stage 3: k3 = k21 + k22

Stage 4: k4 = k11 + k3

structure for the design variable number j, the clock cy-
cles of all the operations are proportional to the number of
design variables D.

The “Eval” module is constructed by a RISC-type MIPS
pipeline processor including the single precision floating
point number units. By this design, various benchmark
functions can be easily executed by software.

4. Experiments

The PSO processor is described by Verilog-HDL, and
the performances are evaluated. The parameters of each

- 608 -



particle are fixed to w = 0.9, c1 = c2 = 1.0. Altera
Quartus II is used for the logic synthesis, and ModelSim-
Altera is used for the logic simulations. Altera Cyclone IV
EP4CE30F23I7N is selected as the target device.

In order to perform basic circuit operation verification,
only 2 particles are implemented. Table 2 shows the num-
ber of the Logic Elements (LEs) for each module. Note
that the LEs of higher layer modules include those of lower
layer modules. “I/O” includes the control modules of input
and output devices. “Top” is the top module which con-
nects the “Swarm” and “I/O” modules.

The “Velocity” module are designed by the pipeline
structure with 9 single precision floating point number
functional units. Therefore, the LEs of this module are
dominant. The “Particle” module operates based on the
PSO algorithm and has the exclusive operations between
the lower layer modules. Therefore, by sharing their func-
tional units, the total LEs can be reduced further.

Next, the execution time of the PSO processor is con-
sidered. As an example, the clock cycles of the “Velocity”
module are focused on. From Eq. (4), 9 arithmetic oper-
ations are executed in updating a single component of the
velocity vector. The clock cycles of the velocity update in
serial processing are given by CC0 = 9NDL, where N, D
and L are the number of particles, the number of design
variables and the maximum latency of the functional units,
respectively. On the other hand, the PSO processor has
multiple “Particle” modules in parallel and has the pipeline
structure for the design variable index j. If D is assumed to
be large, the clock cycles of the velocity update in the PSO
processor are given by CC1 ' DL. From CC0/CC1 ' 9N,
the PSO processor is 9N times faster than the serial pro-
cessing.

The PSO processor has an advantage in executing the
PSO algorithm by the large number of particles. The pro-
posed prosessor has a development potential espesially for
solving larger-scale problems.

5. Conclusions

This paper has proposed the PSO processor suitable for
parallel processing. The logical simulations and the logi-
cal synthesis on FPGA have been performed, and the cor-
rect circuit operations have been confirmed. Future prob-
lems include the evaluation of the performances for vari-
ous benchmark problems, and the implementation of the
PSO algorithm with the network topologies[2]-[7] and/or
the multi-swarm structures [8]-[11].

References

[1] J. Kennedy and R. Eberhart, “Particle Swarm Opti-
mization,” Proc. IEEE Int. Conf. Neural Networks,
pp. 1942-1948, 1995.

[2] T. Tsujimoto, T. Shindo, T. Kimura, and K. Jin’no, “A

Table 2: Logic Elements (LEs) of each module
Layer Module LEs

0 Top 28,092
1 I/O 1,132
1 Swarm 26,865
2 Particle 13,342
3 Init 3,933
3 Eval 1,602
3 Pbest 86
3 Gbest 1,027
3 Velocity 4,421
3 Position 2,273

Relationship between Network Topology and Search
Performance of PSO,” Proc. IEEE CEC, pp. 1526-
1531, 2012.

[3] E. Miyagawa and T. Saito, “Particle Swarm Optimiz-
ers with Growing Tree Topology,” IEICE Trans. Fun-
damentals, E92-A, pp. 2275-2282, 2009.

[4] S. B. Akat and V. Gazi, “Particle Swarm Optimiza-
tion with Dynamic Neighborhood Topology: Three
Neighborhood Strategies and Preliminary Results,”
Proc. IEEE Swarm Intelligence Symposium, pp. 1-8,
2008.

[5] J. Lane, A. Engelbrecht and J. Gain, “Particle Swarm
Optimization with Spatially Meaningful Neighbors,”
Proc. IEEE Swarm Intelligence Symposium, pp. 1-8,
2008.

[6] R. Sano, T. Shindo, K. Jin’no, and T. Saito, “Par-
ticle Swarm Optimization with Switched Topology,”
Proc. IEEE SMC, pp. 530-535, 2012.

[7] H. Matsushita, Y. Nishio and T. Saito, “Particle
Swarm Optimization with Novel Concept of Complex
Network,” Proc. NOLTA, pp. 197-200, 2010.

[8] G. G. Yen and M. Daneshyari, “Diversity-based Infor-
mation Exchange among Multiple Swarm in Particle
Swarm Optimization,” Proc. IEEE CEC, pp. 6150-
6157, 2006.

[9] M. Iwamatsu, “Multi-Species Particle Swarm Opti-
mizer for Multimodal Function Optimization,” IEICE
Trans. Inf. and Syst., vol. E89-D, no. 3, 2006.

[10] H. Nakano, Y. Taguchi, Y. Kanamori, A. Utani,
A. Miyauchi, and H. Yamamoto, “A Competitive Par-
ticle Swarm Optimizer and its Application to Wireless
Sensor Networks,” IEEJ Trans., vol. 7, no. S1, pp. 52-
58, 2012.

[11] T. Sasaki, H. Nakano, A. Miyauchi, and A.Taguchi,
“Solving Performances of PSO Networks with Tem-
poral Couplings,” Proc. IEEE SMC, pp. 605-609,
2014.

- 609 -


	Navigation Page
	Session at a glance

