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Abstract– In this paper, we propose a method for the 

circuit analysis using wavelet transform with adaptive 
resolutions. Recently, many approaches to the circuit ana-
lysis using the wavelet transform have been proposed. 
However, there are few reports that the multiresolution 
features of the wavelets are sufficiently applied. The pro-
posed method can choose adaptive resolution automati-
cally using multiresolution analysis and achieve more ac-
curate and efficient calculations. 
 
1. Introduction 

 
Recently, much attention has been paid to the method 

for circuit analysis using wavelet transform [7]–[16]. The 
wavelet transform is often used in signal processing be-
cause of its orthogonality and multiresolution property. In 
particular, Barmada et al. have proposed the Fourier-like 
approach for the circuit analysis using the wavelet trans-
form [13]. In [13], the integral and differential operator 
matrices are introduced to the analysis, and the differential 
and integral equations are transformed into the algebraic 
equations like as using Fourier or Laplace transform. 
Moreover, the method can treat time varying or nonlinear 
circuits. Therefore, this method is useful for various cir-
cuit analyses. 

However, in that method, the use of Daubechies wave-
let makes the handling of the operator matrices compli-
cated, especially, in the edges of the interval. Thus, we 
have proposed the circuit analysis method using Haar 
wavelet [16]. The Haar wavelet is easy to handle itself, 
and the operator matrices using the Haar wavelets are eas-
ily derived by introducing the block pulse functions [5], 
[6]. Moreover, the proposed method can treat the nonlin-
ear time varying circuits.  

In addition, Haar wavelets have the merit to be able to 
analyze the trajectory near the singular points where the 
trajectory moves rapidly with high resolution because of 
the orthogonality and localization property of the wavelet 
functions. As circuit analysis methods using this merit, 
some methods were proposed to pick out the ranges where 
the trajectory moves rapidly at singular point based on ex-
perimental prediction [12], [16]. However, these methods 
cannot be applied when the behaviors of the circuits can 
hardly be predicted. To overcome the problems described 

above, it is necessary to pick out the ranges automatically 
where the trajectory moves rapidly near singular points. In 
this paper, we propose a method for the circuit analysis 
using wavelet transform with adaptive resolutions by 
automatically picking out the ranges which require higher 
resolution analysis by using the result of the multiresolu-
tion analysis. By the proposed method, it is considered 
that more accurate and efficient calculation can be 
achieved even if the behavior of the circuit is hardly pre-
dicted. In this paper, we confirm the effectiveness of the 
above method using a simple example. 

 
2. Haar Wavelet Matrix 
 

Haar functions are defined on interval [ )0,1  as follows, 
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 i = 0,1,L,m −1, m = 2α , 
where α is positive integer, and j and k  are nonnegative 
integers which satisfy i = 2 j + k , i.e.,   k = 0,1,L,2 j −1 for 
 j = 0,1,2,L. 

 
r y  is m ×1-dimensional vector whose elements are the 

discretized expression of y(t)  and   
r c  is m ×1 -

dimensional coefficient vector. H  is m × m -dimensional 
Haar wavelet matrix defined as 
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where  

r 
h i  is 1 m× -dimensional Haar wavelet basis vector 

whose elements are the discretized expression of hi (t) . 
Using these vectors and matrix, Haar wavelet transform 
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and inverse Haar wavelet transform are described as fol-
lows, respectively, 

    
r c = Hr y , (4) 

 ( )1 .Ty H c H c−= =
r r r  (5) 

 
3. Integral and Derivative Operator Matrices using 
Haar Wavelet 
 

The basic idea of the operator matrix has been firstly 
introduced by using Walsh function [5]. However, in logi-
cal way, the matrices introduced by block pulse function 
are more fundamental [4], [5]. The block pulse function is 
the set of m  rectangular pulses which have 1 m  width 
and are shifted 1 m  each other. 

The integral operator matrix of the block pulse function 
matrix B  is defined as the following equation [5], [6]. 

 
0

( ) ( ),
i

BB d Q B tτ τ ≡ ⋅∫  (6) 
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where B(t)  is m × m -dimensional matrix whose elements 
are the discretized expression of the block pulse functions 
bi (t) ,   i = 0,1,L,m −1 and 

 P(m×m )
i =

0 I (m−i )×(m−i )

0(i×i ) 0
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 P(m×m )
i = 0(m×m )  for i ≥ m . 

And the inverse matrix QB(m×m)

−1  is calculated as follows [5]: 
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As the Haar wavelet matrix H  is the set of the orthogonal 
functions, the integral matrix of H  is given as follows: 
 QH = HQB

T H −1 = HQB
T H T . (9) 

Similarly, the derivative matrix of H  can be written as 
 ( ) ( )1 11 1 .T T T

H B BQ H Q H H Q H
− −− −= =  (10) 

 
4. Haar Wavelet Expression of Branch Characteristics 
of Nonlinear Time Invariant Circuit Elements 
 

As the Haar wavelet is defined on interval [0,1) , the 
generic interval [ )min max,t t  can be rescaled by a new vari-

able τ  on [0,1) , where ( )max min mint t t tτ= − + . In this pa-
per, tmin = 0  without loss of generality, then capacitance 
c [F] and inductance l [H] are scaled to C = c / tmax  and 
L = l / tmax , respectively. 

Next, we show the Haar wavelet expression of branch 
characteristics of nonlinear time varying circuit elements 
for the expression in wavelet domain. See details in [16]. 
Capacitor: 
 ( )1

0 0w HV C C V Q I−= + ,  (11) 

 ( ) ( ) ( )0 0 1 1 1 1, , , , , , T
w m mC Hdiag C i t C i t C i t H− −=   L   

 
Inductor: 

          
 (a)                                          (b) 
Fig. 1: (a) Example circuit in wavelet domain. (b) Charac-
teristics of time varying resistor. 
 

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1
t[sec]

i(t
) [

A
]

SPICE

wavelet
m=64

 
 Fig. 2: Calculation result for 64=m  [16]. 
 
 ( )1

0 0w HI L L I Q V−= +  (12) 

 ( ) ( ) ( )0 0 1 1 1 1, , , , , , T
w m mL Hdiag L i t L i t L i t H− −=   L  

 
Resistor: 
 V = RwI  (13) 
 ( ) ( ) ( )0 0 1 1 1 1, , , , , , T

w m mR Hdiag R i t R i t R i t H− −=   L  
 
5. Circuit Analysis using Adaptive Resolution with 
Multiresolution Analysis 
 

In this section, we show a new method for automati-
cally picking out the ranges to use the adaptive resolution 
by analyzing the example circuit shown in Fig. 1. The 
characteristics of resistor in Fig. 1 (a) is linear and time 
varying as shown in Fig. 1(b). The characteristics of the 
inductor is nonlinear such as ( ) ( )21 0.02L L Li i iφ = + . To 

derive the current through the inductor ( )Li t , using the 
branch characteristics of the circuit elements described in 
the previous section, the wavelet expression LI  of the cur-
rent ( )Li t  is described as follows, 

 ( )
11 1 1

( )L w m m w H w w HI R I Q L C Qα
−− − −

×
 = + + +  

 

 ( )1
0 0H wE V Q L I−⋅ − +  (14) 

Solving this algebraic equation and using the inverse 
transform by Eq. (5), the approximate solution  

r 
i L  of iL (t)  

can be derived. In this paper, we take max 1t = , tmin = 0 ,  
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 Fig. 3: Calculation result with mixed resolutions [16]. 
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 Fig. 4: Multiresolution analysis for 64=m . 
 
C=0.006[F], α = 2 , e(t) = 20t [V], vC (0−) = 50 [V], 
iL (0−) = 10 [A], max 100R = [Ω], Rmin = 0.01[Ω]. 

First, we show the result for m = 64  without the adap-
tive resolution in Fig. 2 [16]. If the waveforms have the 
singular points, more detailed analyses are needed by us-
ing the smaller intervals. However, it makes the calcula-
tion cost higher, for example, by taking m = 128. There-
fore, we have proposed the method with the mixed resolu-
tions as shown in Fig. 3 [16]. In the example circuit 
shown in Fig. 1, we can experimentally imagine that the 
singular points appear at the points where the resistance of 

 
 
 Fig. 5: Multiresolution analysis for 64=m  (g(5)). 
 

Table 1: Adaptive resolution in picked out intervals. 
picked out 
range 

0–
0.16 

0.20–
0.28 

0.38–
0.50 

0.63–
0.66 

0.76–
0.88 

total plots p 10 6 8 2 8 
sampling in-
terval 

1/32  1/16  1/16  1/4  1/16 

 
the time varying resistor switches. Thus, in this case, we 
analyzed it with higher resolutions around such singular 
points. 

However, we cannot predict the singular points for 
every circuit in the real world. To overcome this problem, 
we need to develop the method to pick out automatically 
the ranges for higher resolution analyses. For this purpose, 
in this study, we propose the method using the results of 
the multiresolution analysis.  

Figure 4 shows the results of the multiresolution analy-
sis of the waveform shown in Fig. 2. f ( j)  indicates the 
amounts of the results for  0,1,L, j −1-th resolution wave-
lets and g( j)  indicates the j -th resolution ones. Note that 
f (6) = f (5) + g(5) . Because g( j)  can be considered as 

the error between the lower and the higher resolution 
cases, if g( j)  is large then the approximation is not suffi-
cient. On the other hand, if g( j)  is small, it is considered 
that the approximation has already achieved. In the pro-
posed method, we take the threshold ε  for g( j) , then pick 
out the ranges for g( j) > ε . Figure 5 shows the magnified 
trace of g(5) . In this example, we take ε = 0.13 and the 
thin lines indicate the threshold ε± . In this case, the ar-
rows in the figure describe the picked out ranges. In those 
ranges, we analyze the circuit again with higher resolution 
wavelets. To avoid the over sampling, we set the sampling 
width as 1/2α to satisfy 2α−1 < 2p ≤ 2α  where p  is the 
number of plots in the picked out ranges. Table 1 shows 
the relationship between the picked out ranges and the 
sampling width. The result for proposed method is shown 
in Fig. 6. The total number of plots is 123 and it is less  
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 Fig.6: Calculation result with adaptive resolution. 
 
than 128 that are the number of plots for the case of one 
higher resolution analysis. Moreover, it is less than 168 
for mixed resolution case shown in Fig. 3. Applying this 
process recursively, it is considered that more accurate 
and efficient calculation can be achieved for circuit analy-
sis. 
 
6. Conclusions 
 

In this paper, we have proposed a method for the circuit 
analysis using wavelet transform with adaptive resolutions. 
In particular, the ranges for higher resolution analysis are 
picked out automatically by using the result of the mul-
tiresolution analysis. By the proposed method, it is con-
sidered that more accurate and efficient calculation can be 
achieved even if the behavior of the circuit is hardly pre-
dicted. 

At this moment, the accuracy of the method is not 
enough discussed. The accuracy depends on the setting of 
ε , and the discussion how to set the threshold ε  is one of 
our future problems. 
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