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Abstract—Bond graphs are a well established
graphical formalism for modeling multidisplinary dy-
namic systems. This formalism allows to incorporate
the energetic and the topological properties of the orig-
inal system into the resulting model. Wave digital
structures show many of those features and so the use
of wave digital simulation techniques is proposed. For
a simple bond graph, it is demonstrated that there is
a one-to-one correspondence between the bond graph
elements and the elements of the resulting wave dig-
ital structure, which makes it quite easy to derive a
simulation algorithm.

1. Introduction

The path from an open problem in physics or en-
gineering to some appropiate numerical results can
roughly be described by Fig. 1 [1].
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Figure 1: Concept of modeling process

The real system and the numerical results are linked
via a simulation model which consists of two main
parts. In the first part physical theory is employed for
the actual modeling process, while the second refers to
the solution of this model on a digital computer.
If a lumped approach is possible, the bond graphs

concept is a suitable tool for the modeling process
(cf. [1]). It is a graphical description of the dynamic
behavior of multidisciplinary physical systems. Sys-
tems originating from different physical domains are
described in the same manner. The connecting physi-
cal concepts are energy and energy exchange.
The resulting bond graph is essentially a labeled,

often directed, graph in which the vertices represent
idealised descriptions of physical phenomena like stor-
age or dissipation of energy, while the edges, called
bonds, represent the power exchange between these
phenomena.
The most striking positive features of this concept

are the use of power conservation as an ordering prin-
ciple and the possibility of modular modeling. Thus

the bond graph structure reflects the energetic behav-
ior and the topology of the original system and thereby
should lead to more reliable models.
However, when it comes to the actual simulation,

usually a state space model is derived from the bond
graph in order to employ standard numerical algo-
rithms. By doing this, many of the above-mentioned
positive features are not represented in the resulting
algorithm.
Since a special feature of wave digital structures is

their one-to-one correspondence between the elements
of the underlying reference circuit and the resulting
simulation algorithm, they show exactly the desired
properties (cf. [2]). So it seems to make sense to ex-
amine how wave digital structures can be employed to
simulate bond graph models.
If the bond graphs junction structure is a tree (loop-

free) there is an almost one-to-one correspondence be-
tween the bond graph elements and the elements of the
wave digital structure, which will be demonstrated in
the following sections.

2. Ports, interconnections, and elements

In this section some relations between bond graph
elements and wave digital elements will be shown. Due
to limited space, this will be restricted to elements
needed for the example in section 3. In each case, a
figure will show the bond graph symbol, an electrical
equivalence, and the corresponding wave digital repre-
sentation.

2.1. Ports

The key concept of both, bond graphs and wave digi-
tal structures, is the notion of a port, which is the place
where energy exchange takes place. A port consists of
two terminals and is assigned with an across variable
e (called effort) and a through variable f (called flow).
In a bond graph, a port is connected to a straight line,
labeled with effort and flow. The indication of the
power direction will be omitted in this paper. In the
electrical domain efforts and flows represent voltages
and currents, respectively (see Fig. 2).
In the wave digital domain, a port is represented by

so called wave quantities (waves for short). These are
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defined by

a = e+Rf,
b = e − Rf

⇔ e = (a+ b)/2,
f = (a − b)/(2R), (1)

with a port resistance R > 0 assigned to each port.
The wave a is called the incident wave, b is called the
reflected wave. While the causal relationship between
efforts and flows is not clear in some cases, reflected
waves are always caused by incident waves.
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b

Figure 2: Definition of a port

2.2. Interconnections

Interconnections model the way in which the energy
transfer between ports takes place. There exist two
basic types of interconnections. The first is the com-
mon effort interconnection. For n ports it is described
by

e1 = e2 = . . . = en and
n∑

ν=1

fν = 0. (2)

The corresponding bond graph element is called a 0-
junction. The second one is the common flow inter-
connection, which is described by

f1 = f2 = . . . = fn and
n∑

ν=1

eν = 0. (3)

In bond graph terminology this is called a 1-junction.
Note, that (2) and (3) are equivalent to Kirchhoff’s

current law and voltage law, respectively.

2.2.1. Coupling of two ports

For simplicity only the case of equal port resistances
is considered. A common effort interconnection of two
ports is then constituted by the equations

e1 = e2,
f1 = −f2

resp. b1 = a2,
b2 = a1.

(4)

Bond graph symbol, electrical circuit equivalence, and
wave digital repesentation are shown in Fig. 3. This
0-junction is contractable and can be replaced by a
single bond.
A common flow interconnection of two ports is given

by
e1 = −e2,
f1 = f2

resp. b1 = −a2,
b2 = −a1.

(5)

The respective repesentations are shown in Fig. 4.
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Figure 3: Common effort coupling of ports
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Figure 4: Common flow coupling of ports

2.2.2. Interconnections of three ports

Next, interconnections of three ports with arbitrary
port resistances are examined. The corresponding
wave digital element to the common effort interconnec-
tion is the parallel adaptor depicted in Fig. 5. The par-
allel adaptor represents the wave flow diagram which
maps the incident waves to the reflected waves by

bν = −aν +
3∑

µ=1

γµaµ withγµ =
2Gµ

G1 +G2 +G3
, (6)

for ν = 1, 2, 3 and with the port conductances Gµ =
1/Rµ of the individual ports.
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Figure 5: Common effort interconnection

The wave digital element corresponding to the com-
mon flow interconnection is the series adaptor shown
in Fig. 6 where the reflected waves are calculated as
follows

bν = aν − γν

3∑
µ=1

aµ withγν =
2Rν

R1 + R2 + R3
. (7)

More complex interconnections can be modelled by
successive interconnection of the three-port intercon-
nections, just described.

2.3. Some elements

In this section, those elements will be presented
which are linear models of two basic physical effects,
energy storage and energy dissipation. In most phys-
ical domains there exist two kinds of energy storage
elements. The first kind is the generalization of the
electrical capacitance. In bond graph terminology it is
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Figure 6: Common flow interconnection

a C-element. This element stores energy in the form
of the integrated flow, q, which is a generalized charge,
and is ruled by the equations

q = ce and f = q̇, (8)

where c > 0 denotes the value of the capacitance. The
bond graph symbol is shown in Fig. 7. To get the
corresponding wave digital element, some discretiza-
tion rule preserving the passivity of the element is em-
ployed. Applying the (lossless) trapezoidal rule to the
integral

e(t) = e(t − T ) +
1
c

∫ t

t−T

f(τ ) dτ (9)

with stepsize T > 0, and choosing the port resistance
R = T/(2c) results in the simple equation

b(kT ) = a((k − 1)T ). (10)

This is a simple delay in the wave digital domain
(Fig. 7). Please note, that the wave digital concept is
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Figure 7: Capacitance element

not restricted to the use of the trapezoidal rule. It has
been extended to other passive integration methods of
higher accuracy [3].
The second energy storing element is the inertia el-

ement, the I-element in bond graph terminology. It is
dual to the generalized capacitance and is in the elec-
trical domain represented by an inductance. It stores
energy in form of the integrated effort, p, and is ruled
by the equations

p =mf and e = ṗ, (11)

with m > 0. Applying the trapezoidal rule and choos-
ing the port resistance R = (2m)/T yields

b(kT ) = −a((k − 1)T ) (12)

in the wave digital domain (Fig. 8).
To model the dissipation of energy, a resistance el-

ement is used. The corresponding bond graph R-
element is shown in Fig. 9. Since there is no definite
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Figure 8: Inertia element

input-output relationship between effort and flow the
defining equation is written in the form

e − rf = 0, (13)

which, with port resistance R = r, leads directly to
the description of the wave digital element (Fig. 9):

b = 0. (14)
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Figure 9: Dissipation element

Since the equivalence of the bond graph and the
wave digital realisation of the nonlinear element in the
following example shows a lack of generality, it will not
be dealt with in this section but in the next.

3. Example: Chua’s Circuit

Chua’s circuit, as depicted in Fig. 10, a well known
example of a chaotic system, will be used to demon-
strate the interrelation between the bond graph model
and the wave digital structure. Since the focus here is
on their structural similarities, no simulation results
will be presented (they can be found in [4]).

L3

i3

R4

C2 C1v2 v1

iNL

vNLRNL

Figure 10: Chua’s circuit

The nonlinear (active) element is described by

iNL = G1vNL+ 1
2 (G2−G1)(|vNL+v0|−|vNL−v0|) (15)

with G1 < 0, G2 < 0, and v0 as given parameters.
The corresponding bond graph model is shown in

Fig. 11. The appearance of the two-port 1-junction
is necessary to comply with the sign conventions of
Fig. 10. The nonlinear element is represented by the
symbolNL. In contrast to other publications (e.g. [5]),
no internal bond graph model of this element will be
given.
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Figure 11: Bond graph of Chua’s circuit

3.1. Derivation of the wave digital structure

An essential feature of both, bond graph models and
wave digital structures, is that the structure of the in-
terconnections and the elements are separate model
parts. In a first step the core bond graph (i.e. only
the 0- and 1-junctions) is considered. Replacing ev-
ery junction by the corresponding wave digital element
(adaptor) results in the adaptor structure of Fig. 12.

−1

−1

Figure 12: Corresponding adaptor structure

Then the wave digital equivalences of the linear ele-
ments according to Sec. 2 are added. The wave digital
representation of the nonlinear element is given by

bNL = �1aNL+ 1
2(�2−�1)(|aNL+a0|−|aNL−a0|), (16)

where �1, �2, and a0 are determined by the parameters
of (15) and an appropriate port resistance [4].
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Figure 13: Resulting wave digital structure

Port resistances of ports connecting adaptors are
chosen to lead to reflection free ports. This is essen-
tial to avoid algebraic loops in the resulting algorithm.
Reflection free ports are marked with a �-shaped sym-
bol.
Please note that this wave digital structure is not

just another model representation but already the sim-
ulation algorithm.

3.2. Modularity

Since bond graph models and wave digital struc-
tures are assembled in a modular way, local changes
in the modeled system lead only to local changes in
the models.
To demonstrate this, the circuit is changed by

adding losses to the model of the inductor by intro-
ducing the resistance R3 (Fig. 14).
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Figure 14: Chua’s circuit with lossy inductor
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Figure 15: New bondgraph

Looking at Figs. 15 and 16 one can see that only
local changes (highlighted in grey) in the bond graph
and in the wave digital structure take place. In this ex-
ample just the adaptor coefficient have to be adjusted.
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Figure 16: New wave digital structure
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