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Abstract—This paper deals with the estimation of mod-
els and parameters in generation processes of multi-fractal
signals (time series) based on the multi-agent systems. In
the model for multi-fractal time series, cognitive behav-
iors of agents are modeled by using the GP for learning.
As a result, we find strict multi-fractality in artificial stock
prices, and we see the relationship between the realizability
(reproducibility) of multi-fractality and the system param-
eters. Features derived from the multi-fractality based on
the wavelet transform are used as the input to the conven-
tional discriminant analysis so as to identify the behaviors
of agents. However, generally we need sufficient samples
to estimate the Hausdorff dimension D(h). To overcome
these difficulties, we extend the method to generate multi-
fractal times series based on the Wavelet Transform. As
applications, we evaluate the performance of interpolation
method of the paper by comparing the result of discrimi-
nant analysis of agents’ behavior using Genetic Program-
ming (GP) for learning with sufficient samples, and we also
discuss the recognition of generation models of real stock
prices.

1. Introduction

In recent years, the multi-fractal formalism has been
introduced to describe statistically the scaling properties
of singular measures [1, 2, 3, 6]. The analysis of origin
of multi-fractality is seemed to be much more important
than examining the existence of multi-fractalities, while
these phenomena suggest us how to find anomalities in
time series such as stock prices and surfaces, for example
cloud. But there are no discussion about the origin of multi-
fractality and related topics such as feature extractions .

In previous works, we investigated the possibility to syn-
thesize (generate) artificial fractal time series even chaotic
ones based on multi-agent systems [5, 6]. In the paper, we
extend these methods to estimation of modeling of multi-
fractal signals.

In the first model for multi-fractal time series, cognitive
behaviors of agents are modeled by using the GP for learn-
ing. As a result, we find strict multi-fractality in artificial
stock prices, and we see the relationship between the real-
izability (reproducibility) of multi-fractality and the system

parameters.

In the second model, considering the process of crys-
tal growth of surface, interactions among agents placed on
the two-dimensional lattices reveals as multi-fractal sur-
faces. By selecting parameters for models, we find multi-
fractality in artificial surface data denoted as the height of
accumulated resources.

Features derived from the multi-fractality based on the
wavelet transform are used as the input to the conven-
tional discriminant analysis so as to identify the behaviors
of agents.

2. Multi-Agent based Modeling of Artificial Stock
Markets

In conventional works, authors proposed methods to
generate multi-fractal time series based on modified
wavelet-coefficients by changing the probability distribu-
tion of multipliers using the § distributions, and the mul-
tiplicative cascade [1]. However, the relation between the
characteristics of the multi-fractal time series and mathe-
matical descriptions is not clear. We focus on the artificial
multi-agent systems for the stock market where we can ob-
serve multi-fractality based on the agents’ behavior [5, 6].
In the agent system, by changing the member of agents we
can examine the origin of multi-fractality.

The market structure is set up to be as simple as possible
in terms of its economic components.

Agents of type 1 and 2

The agents of both type 1 and type 2 are assumed to
build forecasts for stock price and dividend of the next pe-
riod by using arithmetic expressions which are called “’fore-
cast equations” including state variables of the market as
operands based on the GP procedures. In the parse tree, the
non-terminal node is taken from the function sets, such as
+,-,/,% and exp, abs ,sqrt. The operands for these functions
(operations) are taken from past stock prices themselves,
constants and variables. At the end of trading, agents up-
date the accuracy of all matched forecast equations accord-
ing to the forecast error and using the GP. It is assumed that
the agents of type 1 possess their individual forecast rules,
but the agents of type 2 only learn from a common pool of
forecast
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Table 1: Cases depending on the numbers of agents

Casel | Case2 | Case3 | Case4 | Case5 | Case6
N, 100 100 0 100 0 0
N, 100 0 100 0 100 0
N3 100 100 0 100 0 0
Ny 100 0 100 0 100 0
Ns 100 100 100 0 0 100
Agents of type 3 and 4

We assume that agents of type 3 and 4 use the produc-
tion rules for trading stocks (called forecast rules). These
agents forecast only the rise/fall of stock prices based on
the forecast rules, and the volume to be traded is assigned
at random. The difference of these two types exists in the
way to use the common forecast rules. It is assumed that
the agents of type 3 possess their individual forecast rules,
but the agents of type 4 only learn from a common pool of
forecast rules for trading without their own rule bases.
Agents of type 5

We assume agent of type 5 who make decisions which
are less than perfectly rational. Agents of type 5 decide at
random when they should sell/buy stocks and how much
they should trade. Then, agents of type 5 have different
characteristics, and behave like speculators.

To investigate the origin of multi-fractality in the artifi-
cial stock prices, the composition or the ratio of agents of
each type may play an important role. Then we prepare
several cases of combination of the number of agents for
each type. Table 1 summarizes these cases depending on
the number of agents where N; denote the number of agents
of type i. These cases are used for the scheme of simulation
studies.

3. Multi-fractality formalism

We use the multi-fractality formalism according to the
definition by Arneodo, Bacry and Muzy (Wavelet Trans-
form Modulus Maxima:WTMM)[2, 3]. We assume that
wavelet transform is applied to the time series x(f) by gen-
erating wavelet coefficients x)'.
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where ¢/ (¢)is the transformation of basic wavelet function
(1) obtained as .

Yo = 27227t - ), 3)

where m and n are scale parameter and space parameter, re-
spectively. In the applications, we use basic wavelet func-
tions given by Daubechies. Then, we take the g-th mo-
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Figure 1: Overview of discriminant analysis of cases based
on multi-fractality (definition of discriminant variables).

ments of xJ as
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The variable S,,(g) is analogous to the partition function.
Then, the following value is obtained by the transform.

log, S m(q) = infylm(gh — D(h))], (6)

where D(h) is the Hausdorff dimension under the condition
where H(x) is h. Then, inversely, we have

D(h) = infylqh — 1(q)]. )

4. Discriminant analysis of agents’ behavior using
D(h)

We use the Multivaraite Discriminant Analysis (MDA)
to estimate agents’ behaviors, namely, Case 1~Case 6..
based on the shapes of D(h) calculated from observations.
To characterize D(h), we use the value of i = hg where
D(h) = 1 and two values of & specified by d;,d, where
D(hy — dy) = D(hy + d») = 0.5. Fig.1 shows the definition
of three variables, called discriminant variables.

The discriminant functions to classify the observation is
organized as follows. We generate sufficient numbers of ar-
tificial stock prices corresponding to Case 1~Case 6 (called
categories), and then the discriminant functions f;(x) corre-
sponding to category i is so estimated that for a certain D(h)
having x = (hy, d,, d>) belonging to category i the function
fi(x) has larger values than another f;(x), j # i.

In the classification stage, we substitute variable x =
(ho,d1, d») obtained from D(h) into every f;(x), and deter-
mine the category where the f;(x) has largest values.

5. Interpolation for small number of samples

It must be noted that we need at least 10000 samples to
obtain reliable results for D(h), therefore a kind of interpo-
lation is necessary for cases with relatively smaller num-
ber of samples. In ordinary generation process of artificial
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Figure 2: An example of estimated probability density of
random number A ;; from time series.

multi-fractal time series, we use following formula origi-
nally proposed by Wornell and used for real applications
by Riedi et.al [1, 8].

2) starting with j = O th stage, for the next stage j = j+ 1
we generate new pairs of coefficients k = 0,1, ..., 27— 1
such as.

Ujsior =272 (Ujx + Win), Wix = ApUjs, (8)

Ujrioest = 272U 1 — Wip), 9

where Aj; are random numbers obeying £ distribution
whose region is [—1, 1].
3) iterate procedure until we obtain sufficient numbers of
samples.

By inverting above relation, we have.

Ujk = 272U j10% + Ujsr2501)s (10)

Wik =27"2(Ujs106 = Ujsi2k01)- (1D

Using these relations, we can estimate U ;; and A ;; in upper
stage up to Uy, and finally obtain the data for estimating
properties of random numbers A ;.

After identifying the property of random numbers A j;,
We can further generate time series until we obtain suffi-
cient samples of data. We have similar relations for the
interpolation of surface data.

Fig.2 shows a numerical example of probability density
function of random numbers A ;; obtained from an artificial
stock price. As is seen the shape of the function is so-called
two-top and relatively complicated.

6. Simulation results

Since our main interest exists in finding the features of
multi-fractal signals domain, then we skip the process to
compare and validate the results of feature extraction using
obtainable results by other conventional methods.
Artificial stock prices

1.2

Figure 3: Examples of D(h) for Cases 1~6.

We can see various characteristics of multi-fractality for
each cases of composition of agents in artificial stock mar-
ket through 7(gq), D(h). We assume following parameters
for simulation studies.
number of individuals: agents of type 1,3 have 50 own in-
dividuals, agents of type 2 and 4 have 50 shared individuals
size of array of individual: length of individuals is selected
to be 30
record of stock prices: 100000 samples

Fig.3 shows an example of D(h) for Cases 1~6. Then,
it is possible to estimate composition of dominant agents
based on the analysis of features obtained from results such
as 7(q), D(h).

In the following, we use conventional Multi-variate Dis-
criminant Analysis (MDA) by employing statistical pack-
age to identify classes. The inputs (discriminant variables)
for the MDA are composed of following eleven observa-
tions. So as to clarify the definition of these variables, the
outlines of definitions are given as follows.

(1) value of & = hy where D(h) reaches its maximum (one).
(2) spread of D(h) by defining d;, d, for which D(hy—d;) =
D(hy +d,) = 0.5

We generate 20 time series for each case of composition
of agents, and then apply MDA by obtaining features D(h)
for these cases. Table 2 shows the result of the classifi-
cation (recognition) by the MDA for Case 1 through 6 as
the second task by showing the rate of correct recognition.
Vertical and the horizontal column correspond to the orig-
inal and estimated classes, and the number in each lattice
means the rate of recognition. As is seen from the result,
we can identify the cases of composition of agents at the
rate about 95%. The fact means that the estimation of more
accurate composition of agents dominating the market may
be possible by using the method proposed by the paper.

Result of interpolation

We also show the classification result for cases where
number of usable samples N is restricted. Artificial stock
prices are divided into segments having the length N,
and then the interpolation is applied to generate sufficient
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Table 2: Result of classification by MDA for multi-fractal
stock prices.

Casel | Case2 | Case3 | Case4 | Case5 | Case6b
Casel 0.95 0 0 0 0 0.05
Case2 0 0.95 0 0 0.05 0
Case3 0 0.1 0.9 0 0 0
Cased 0 0 0 0.95 0.05 0
Case5 0 0 0.05 0 0.95 0
Case6 0 0.05 0 0 0 0.95

Table 3: Result of classification by using interpolation for
multi-fractal stock prices.

N Casel Case2 Case3 Case4 Case5 Case6b
4096 0.68 0.68 0.83 0.82 0.70 0.68
2048 0.68 0.67 0.80 0.81 0.70 0.66
1024 0.67 0.65 0.80 0.79 0.64 0.64
512 0.67 0.59 0.79 0.78 0.60 0.60
256 0.43 0.59 0.55 0.52 0.45 0.55
128 0.43 0.53 0.54 0.50 0.45 0.54

64 0.43 0.51 0.52 0.50 0.43 0.50

length of time series using wavelet transform. Table 3
shows the classification result. Vertical and the horizontal
column correspond to the original and estimated classes,
and the number in each lattice means the rate of recogni-
tion. As is seen from the result, if the usable number of
samples N is greater than 512, we have about 60% correct
classification by using the segments. From the result, it
is expected that if we have at least 512 samples of stock
prices, the classification and estimation of agents’ behavior
dominating the market is possible. On the other hand, even
though the available number N is large such as 4096, the
effect of interpolation is gradual and a kind of limitation
reveals.

Real stock prices

Then, we apply the classification scheme based on the
interpolation of real stock prices. We use the Nikkei av-
erage index observed from July 13, 1994 to November 5,
2002 (2048 samples). We divide the samples into a set of
portions of prices with length N, then apply the interpola-
tion and WTMM to get D(h) used for classification. As the
discriminant functions we use the agents simulation result
with sufficient large number of prices. Table 4 shows the
result of classification into Case 1~Case 6 depending on
the length N. As is seen from the result, as N decreases the
diversification of classification becomes large.

7. Conclusion
This paper treated the estimation of models and parame-

ter in generation processes of multi-fractal signals based on
the multi-agent systems. For future works, it is necessary

Table 4: Result of estimation of generation models for
Nikkei stock prices when the number of available samples
is N.

N

Casel Case2 Case3 Case4 Case5 Case6
2048 0.00 0.00 0.00 1.00 0.00 0.00
1024 0.00 0.50 0.00 0.50 0.00 0.00
512 0.00 0.50 0.00 0.50 0.00 0.00
256 0.00 0.25 0.00 0.38 0.38 0.00
128 0.00 0.44 0.00 0.313 0.25 0.00
64 0.06 0.38 0.06 0.31 0.16 0.03

to apply the method of the paper to real data such as stock
prices.
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