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Abstract—Spiral waves and spatio-temporal chaos
are the main causes of a serious cardiac arrhythmia.
The cardiac muscle has characteristic features of ex-
citable media. It is well known that the fibrosis of
myocardium, sets of non-excitable cells, is strongly
correlated with an incidence of serious arrhythmias.
The present paper examines the suppression of spiral
waves and spatio-temporal chaos in excitable media
with fibrosis. The boundary periodic pacing is applied
to the excitable media. The influence of non-excitable
cells on the suppression performance is investigated on
numerical simulations. These numerical investigations
suggest that the angular frequency of the boundary
periodic pacing should be low for the high fibrosis ra-
tio.

1. Introduction

Sudden death is mainly caused by fatal arrhythmias
such as the ventricular tachycardia and the ventricular
fibrillation. In order to eliminate the ventricular fib-
rillation, a high-voltage electric shock is applied to a
patient. Although this method succeeds in suppressing
the fibrillation, it may induce burns and aftereffects to
a patient. In recent years, the advanced defibrillation
scheme with a low-voltage electric shock is required to
avoid such problems.

It is well accepted that the ventricular tachycar-
dia and the ventricular fibrillation would be caused
by electrical spiral waves and spatio-temporal chaos
occurred in cardiac tissue [1]. As the tissue can be
considered as excitable media, the elimination of spi-
ral waves and spatio-temporal chaos in mathematical
models of excitable media corresponds to a defibrilla-
tion.

There has been growing recognition that such elimi-
nation would be a key phenomenon for medical care. It
is therefore necessary to find effective methods for the
elimination. So far, many researchers have proposed
the various methods for eliminating spiral waves and
spatio-temporal chaos in mathematical models of ex-
citable media. These are classified into the global and
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non-global methods: for the global methods, an input
signal is applied to the whole media [2, 3, 4]; on the
contrary, for the non-global methods, it is applied to
some parts of the media [5, 6, 7, 8, 9].

It is generally known that the real cardiac muscle is
not homogeneous: the real muscle includes the fibrotic
tissue which consists of non-excitable cells. In healthy
hearts, the percentage of fibrotic tissue makes up only
5% of the total tissue. During aging and in cardiac
diseases, the percentage may increase up to 35% [10].
An increased amount of fibrotic tissue is strongly cor-
related with an increased incidence of serious arrhyth-
mias [11, 12, 13]. Therefore, the presence of fibrosis
should be taken into consideration in developing the
defibrillation scheme. Recently, the excitable media
with fibrosis are described by the mathematical mod-
els: the effect of diffuse fibrosis to the wave propaga-
tion has been investigated [14, 15, 16].

The purpose of this work is to investigate the elim-
ination of spiral waves and spatio-temporal chaos in
the excitable media with fibrosis. It is shown that the
spiral waves and spatio-temporal chaos can be sup-
pressed by applying periodic pacing on media’s bound-
ary. This method does not require the measurements
and the feedback control mechanism; thus, it would be
easily realized in practical situations, such as the im-
plantable cardioverter-defibrillator. The influence of
fibrosis on the suppression performance is investigated
by numerical simulations.

2. Excitable media with nonexcitable cells

The excitable media can be described by simple
mathematical models. The present paper employs a
two-dimensional Bär model [17]:
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Figure 1: Initial condition and development into spiral
waves (ε = 0.06): (a) initial condition; (b)-(c) spiral
waves.

Here ∇2 := ∂2/∂x2 + ∂2/∂y2 is the Laplace opera-
tor. u ∈ R and v ∈ R are the activator and inhibitor
variables, respectively. The parameters a and b are
related to the excitation threshold, and they are fixed
at a = 0.84, b = 0.07 throughout this paper. As the
parameter ε is a small positive value, u is considered
as a fast variable compared with the slow variable v.
As shown in Fig. 1, the suitable initial conditions lead
to a stable spiral wave and a meandering spiral for
ε < 0.069. The spiral wave breaks up and then spatio-
temporal chaos occurs for ε > 0.069. In our numerical
simulations, the time step Δt = 0.002 and the space
step Δx = Δy = 0.1 are used. Further, model (1) has
the cell size, x ∈ [0, 400] and y ∈ [0, 400], with the
no-flux boundary.

The diffuse fibrosis in cardiac tissue was modeled by
the presence of nonexcitable obstacles of size 0.1×0.1.
These were randomly distributed over the medium,
which mainly expresses the aging fibrosis [14]. The
ratio of nonexcitable obstacles corresponds to that of
fibrosis.

To suppress spiral waves and spatio-temporal chaos,
the periodic pacing is applied to the media’s boundary
[8]. Equation (1a) is modified as

∂u

∂t
= −1

ε
u(u−1)

(
u − v + b

a

)
+∇2u+F (x, t). (3)

The input signal for elimination, F (x, t), is given by

F (x, t) =

{
15δ(x) cos ωt t ∈ [0, 500]
0 otherwise

, (4)

where ω is the angular frequency. The delta function
δ(x) is 1 only at the boundary x = 0. The initial con-
dition (i.e., medium state at t = 0) is set to a spiral
wave or spatio-temporal chaos. The input signal is
applied for the period t ∈ [0, 500]. We judge the suc-
cessful elimination by the fact that the entire medium
settles into the rested state by t = 550.

3. Numerical simulations

Figure 2 shows the time-space patterns for ε = 0.08
and ω = 1.45. The shaded area represents the ex-
cited state (u ≥ 1/3) and the white area represents the
rested state (u < 1/3). The suppression occurs with
0% fibrosis as shown in Figs. 2(a)-(d); however, it does
not occur with 20% fibrosis (see Figs. 2 (e)∼(h)). For
ε = 0.08 and ω = 1.20, the suppression does not occur
with 0% fibrosis as shown in Figs. 3 (a)-(d); in con-
trast, it occurs with 20% fibrosis (see Figs. 3(e)∼(h)).
From these results, we notice that the suppression de-
pends on the angular frequency ω and the fibrosis ra-
tio.

Figure 2: Suppression of spatio-temporal chaos by the
boundary periodic pacing (ε = 0.08, ω = 1.45): (a)-(d)
0% fibrosis; (e)-(h) 20% fibrosis.

Figure 3: Suppression of spatio-temporal chaos by the
boundary periodic pacing (ε = 0.08, ω = 1.20): (a)-(d)
0% fibrosis; (e)-(h) 20% fibrosis.
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Figure 4: Controllable ranges in ε-ω plane for fibrosis
ratio 0, 10, 20 %.

It was reported that, without fibrosis (i.e., 0%),
the controllable angular frequency ω strongly depends
on the parameter ε [8]. The present paper shall in-
vestigate the influence of the fibrosis ratio on the
controllable angular frequency ω. Figure 4 indicates
the controllable angular frequency in ε-ω plane for
fibrosis ratios 0, 10, 20 %. The upper (lower) bound
of the controllable angular frequency are denoted by
ωup (ωlow). The suppression occurs when ω is set to
ω ∈ Δω := [ωlow, ωup]. Here, Δω is called controllable
range. The ranges Δω for the ratios 0% and 10% are
almost the same. On the other hand, for the ratio 20%,
ωup decreases greatly and ωlow decreases slightly with
an increase in the fibrosis ratio. Further, it is observed
that, for the ratio 30%, input signal (4) cannot sup-
press the spiral waves and the spatio-temporal chaos
(i.e., Δω = 0). From these results, we notice that in-
put signal (4) is effective to the excitable medium with
fibrosis up to about 20%.

4. Discussion

This section considers the reasons why the upper
and lower bounds of the controllable angular fre-
quency, ωup and ωlow, decreases with an increase in
the fibrosis ratio.

To begin with, let us consider the reason ωup de-
creases. It is obvious that input signal (4) induces
the plane waves with the angular frequency ω as indi-
cated in Figs. 2 and 3. Figure 5 shows the time-space
pattern on the medium with fibrosis ratio 20% and

ε = 0.08 for ω = 1.35, which is under the upper bound
ωup. Although the waves are disturbed due to the 20%
fibrosis, they still keep their distances. It is clear that
these distances become smaller with increasing ω. For
over the upper bound ωup, ω = 1.40, the waves’ dis-
tances become smaller as shown in Fig. 6. Eventually,
the disturbed plane waves touch together and collapse
their formation. On the other hand, it was reported
that the velocity of traveling waves decreases as the
fibrosis ratio increases [15]. This report implies that,
with increasing the fibrosis ratio, the plane waves’ dis-
tances become smaller. The disturbance effect and the
smaller waves’ distances would explain the reason ωup

decreases with an increase in the fibrosis ratio.
It is known that if several waves with different fre-

quencies exist in the medium, a wave with the highest
frequency dominates the entire medium [18]. Hence,
if the input signal frequency is higher than the spi-
ral/chaotic waves frequencies, the plane wave induced
by the input signal dominates the entire medium. This
is the fundamental mechanism of suppression with the
boundary periodic pacing. Since the frequencies of
spiral/chaotic waves decrease with an increase in fibro-
sis ratio, even low-frequency input signal can suppress
them with the high fibrosis ratio. This would be the
reason ωlow decreases as the fibrosis ratio increases.

Figure 5: Time-space pattern on the medium with fi-
brosis ratio 20% and ε = 0.08 for ω = 1.35.

Figure 6: Time-space pattern on the medium with fi-
brosis ratio 20% and ε = 0.08 for ω = 1.40.
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5. Conclusion

The present paper dealt with the suppression of spi-
ral waves and spatio-temporal chaos in excitable media
with fibrosis. The influence of non-excitable cells on
the suppression performance has been investigated by
numerical simulations. According to these numerical
investigations, we might suggest that the angular fre-
quency of boundary periodic pacing has to be low for
high fibrosis ratio (i.e., aged tissue).
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