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Abstract—Phase structure of dynamical system
governs their trajectories, which depend on the initial
condition. Accordingly, the power spectra of trajec-
tories include the structural information of the phase
space of the nonlinear system. In this paper, the po-
tential function of a low-dimensional nonlinear system
is estimated through the power spectra of the trajec-
tories from the given initial conditions. It is clarified
that a method has a potential to reconstitute the po-
tential function in the dynamical system.

1. Introduction

Nonlinear systems show inherently a variety of phe-
nomenon including chaos [1, 2, 3]. Most of analyzing
methods to grasp nonlinear systems are based on the
temporal characteristic in phase space: Lyapunov ex-
ponent, Poincaré map, correlation function, invariant
measure, statistics value, and so forth [2, 3, 4, 5]. In
particular, the analyses based on operators are pro-
posed for extracting invariant measures and statistics
values [6, 7, 8]. The analysis for Arnold web reso-
nances are proposed to an experimentally accessible
atomic system that may well form a paradigm for phe-
nomena in several degrees of freedom [9]. The method
fundamentally focuses on power spectrum distribution
in parameter space [10]. The power spectrum has the
information of trajectories which are governed by the
phase structure and the realm of solutions.

In this paper, the recurrent dynamics is focused
on through power spectrum for the analysis of low-
dimensional nonlinear dynamical system. In addition,
a spectral reconstitution method is proposed for ex-
tracting potential function based on a spectral decom-
position of dynamical system.

2. Brief Summary of Power Spectrum and Sys-
tem

2.1. Power Spectrum of Trajectory

Power spectrum describes the power distribution in
angular frequency ω [11]. In the numerical analysis,
every trajectory is obtained as a time series for inte-
gration step. Here, an autocorrelation function of the

Figure 1: Fundamental harmonic power spectrum dis-
tribution in initial value phase space. k = 0 and B =
0.1 in Eq. (3). Color shows power level.

time series is applied to derive the power spectrum of
the time series. The autocorrelation function is an in-
tegral function on a time shift, which is a measure of
correlation defined by [11, 12]:

R(τ) = lim
T→∞

1
T

∫ T/2

−T/2

f(τ + t)f(τ)dt. (1)

f(t) denotes a trajectory in dynamics. Fourier trans-
form of the autocorrelation function gives a power
spectrum:

S(ω) =
∫ ∞

−∞
R(τ)e−iωτdτ. (2)

In the following section, phase structure is discussed
through the power spectrum decomposition for non-
linear dynamical systems with relation to initial con-
ditions.
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2.2. Power Spectrum Distribution in Initial
Value Space

Here, a Duffing type nonlinear dynamical system is
picked up for discussion:

dx

dt
= y

dy

dt
= −ky − x3 + x + B cos t,

(3)

where −ky denotes damping term and B cos t the ex-
ternal force term. First, the initial value space is split
in lattice at 400 × 400. Secondly, the solution is cal-
culated for each initial condition by the fourth order
Runge-Kutta method until six cycles of the external
force. Then, a power spectrum of the solution is esti-
mated by foregoing method. Fig. 1 shows the funda-
mental harmonic power spectrum distribution in ini-
tial value space with k = 0 and B = 0.1. The result
represents the information of trajectories which are
governed by the phase space structure. In the later
sections, we focus on the relationship between power
spectrum and potential function.

3. Potential Function of Low Dimensional Sys-
tem

This section discusses potential function for the
given low dimensional system and their distinction by
spectral reconstitution. Here, the system is generally
described as

dx

dt
= y

dy

dt
= −εky − ∂U(x)

∂x
+ εB cos t,

(4)

where −εky denotes damping term and εB cos t the
external force term. ε is relatively small enough. After
neglecting these terms, Eq. (4) becomes

d2x

dt2
= −∂U(x)

∂x
. (5)

3.1. Monomial Potential

Here, we assumed a monomial potential function.
The potential function is given as anxn. an is a con-
stant coefficient. It is also assumed that all trajec-
tories are bounded. Then, an > 0 and n is even. By
the symmetry of the potential function, the period T is
equivalent to the term given by x0. x0 is a point where
potential value shows peak. The relationship between
the period T and the fundamental angular frequency
ω holds ω = 2π/T . Then, ω is represented by [13, 14]
:

ω =
√

anπ

2
n

Γ ( 1
n + 1

2 )
Γ ( 1

n )
|x0|

n
2 −1, (6)
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Figure 2: Potential function of U(x) = x4/4 − x2/2.
Saddle exists at x = 0 and two stable sinks exist at
x = ±1.

where Γ (x) is Gamma function, which is defined as∫ ∞
0

tx−1e−t dt.

3.2. Polynomial Potential

In this section, polynomial potential function is con-
sidered. Then, the potential function is generally given
by

U(x) =
n∑

i=0

aix
i. (7)

Assuming that all trajectories in the system are
bounded, an > 0 and n is even. The lowest dimen-
sional polynomial function possesses two wells under
fourth potential function. That is, the potential func-
tion is depicted by U(x) = x4/4 − x2/2 as drawn in
Fig. 2. The equilibrium points exist at x = 0 and
x = ±1 for the potential function. One of them is a
saddle at x = 0 and others are stable sinks at x = ±1.

4. Spectral Estimation of Potential Function

In this section, the potential function is numerically
estimated through power spectrum for the given po-
tential function U(x) = x4/4 − x2/2. The following
sections discuss the distinction of the potential func-
tion to reconstitute.

4.1. Decomposition of Power Spectrum

Decomposition of power spectrum from trajectories
is expounded so that potential functions is reconsti-
tuted. Each trajectory is decomposed to power spec-
trum by the method in Section 2.1. The fundamental
harmonic wave shows the main power of the trajectory.

Figure 3 shows the numerically obtained distribu-
tions along x. Their initial condition is set at x(0) = x,
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Figure 3: Fundamental angular frequency ω and power
of fundamental angular frequency ω under U(x) =
x4/4−x2/2. Their initial condition is set at x(0) = x,
dx/dt|t=0 = 0.

dx/dt|t=0 = 0. They present the fundamental angular
frequency ω and the power of all oscillations.

4.2. In Vicinity of Saddle

Here, the power spectrum is analyzed in the vicinity
of a saddle at x = 0. The nearer the initial value x
approaches the saddle, the lower the fundamental an-
gular frequency ω becomes in Fig. 3(a). Fig. 4 shows
the relationship between the period T and initial con-
dition x. The eigen values of the saddle are obtained
as λ = λ1, λ2, where λ1 = 1, λ2 = −1 at x = 0 for the
potential function U(x) = x4/4−x2/2. In the vicinity
of the saddle, a trajectory is governed by the eigen vec-
tor. Here, we assume that the trajectory passes from
x1 to x2. x1 is an initial value in the vicinity of the
saddle and x2 is a point where U(x1) = U(x2). Then
the period T follows:

λ1T

2
= lnx2 − lnx1 + α, (8)

where α denotes a linear error term. Fig. 4 also shows
the estimation of the period T . Hence, the period T
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Figure 4: Relationship between the period T and ini-
tial condition x in the vicinity of saddle equilibrium
point, under U(x) = x4/4 − x2/2. Aqua and green
lines express Eq. (8), where α = 1.3863 and x2 =

√
2.

gives the the eigen value of a saddle in an unknown
potential function U(x). In the vicinity of the initial
condition which has same potential value as the saddle,
similar relationship the period T and the eigen value
of a saddle is confirmed in Fig. 3.

4.3. In Vicinity of Stable Sinks

We discuss the power spectrum in the vicinity of sta-
ble sinks at x = ±1. For the stable sinks, the power
spectral distribution of the fundamental angular fre-
quency ω almost becomes 0 in Fig. 3(b). However,
the fundamental angular frequency ω converges to 1.4
in Fig. 3(a). The result is depicted as follows:

U(x′) =
1
4
(x′ + 1)4 − 1

2
(x′ + 1)2

=
1
4
x′4 + x′3 + x′2 − 1

4
, (9)

where x′ = x − 1, which is a variational displacement
around a center at x = 1. The potential function U(x′)
has a second order term x′2. Assuming sufficiently
small x′, the second order term x′2 is predominant in
the potential function U(x′). Therefore the potential
function U(x′) can be approximated as U(x′) = x′2.
The fundamental angular frequency ω becomes as

√
2

in Fig. 3(a). A fundamental angular frequency ω ap-
proximately gives a potential function U(x) in a vicin-
ity of stable sink.

4.4. Phase Structure in Large Area

It is important that a phase structure of the dynam-
ical system is discussed in larger initial space. Fig. 5
shows one of the relationship between the fundamen-
tal angular frequency ω and the initial condition x.
The fundamental angular frequency ω is proportional
to the |x| in Fig. 5. This is because the highest order
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Figure 5: Relationship between fundamental angular
frequency ω and initial condition x in large area. In
the estimation, U(x) = x4/4 − x2/2.

term of the potential function is dominant according to
the increase of amplitude. In Eq. (6) the fundamental
angular frequency ω is proportional to the initial con-
dition |x| with the potential function of U(x) = x4/4.
The highest order term naturally appears.

4.5. Reconstitution of Potential Function

In the previous sections, vicinities of equilibrium
points have characteristics. In particular, the period T
in vicinity of saddle sets the eigen value of the saddle,
and the period T in vicinity of stable sink represents
a second order term of the potential function U(x).
Therefore, the potential function is approximately de-
scribed as a quadratic potential function in vicinities
of the equilibrium points. In addition, phase structure
in larger area indicates max dimension n and the co-
efficient an of potential function. The spectral decom-
position of dynamical system extracts a compartment
of the potential function.

5. Summary

This paper focused on the relationship between
power spectrum and potential function based on the
fundamental harmonic power spectrum distribution.
In vicinity of saddle, the trajectories had the infor-
mation of the eigen values of the saddle. In addition,
the potential function is approximately described as
quadratic potential function in vicinities of the stable
sinks. It is also confirmed that the highest order term
of the potential function appeared in larger area.
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