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Abstract—Auditory nerve fibers transmit very
precise timing information about incoming sound-
waves from the inner hair cells (IHC) of the cochlea
to the auditory nuclei of the brain. In this study, we
investigate the response of a three-component model
cochlea-IHC-auditory nerve. We show that the tem-
poral and spectral characteristics of auditory nerve
responses to amplitude-modulated (AM) tones repro-
duce biophysical measurements, and are a consequence
of the synchronization of neurons upon the driving sig-
nal. To show the robustness and generality of this
phenomenon, we investigate the Arnold tongues cor-
responding to a neuron model with stable limit-cycle
dynamics driven by a sinusoidal. Finally, we discuss
the contribution of the cochlear nonlinearities on the
form of the resulting spiking patterns.

1. Introduction

The dynamics of regularly spiking neurons are de-
scribed in a mathematical sense by stable limit-cycle
oscillations [1]. The coupling of limit-cycle oscillators
is in many ways well understood, see e.g. [2]. It is de-
scribed by phase- and frequency-locking (a generalized
synchronization scheme) along Arnold tongues. For
coupled neurons driven by constant currents, a compu-
tational model has been developed [1], where a phase-
locked computation relates the linear relationship be-
tween input current and intrinsic spiking frequencies
to the resulting periodic spiking pattern of the cor-
responding Arnold tongue. A situation where this
model could be of importance is the auditory periph-
eral neural system. Cochlea oscillations, locally ampli-
fied by the outer hair cells (OHC) are transferred by
the inner hair cells (IHC) to the auditory nerve fibers
by its mainly voltage-dependent ion-channels in the
form of oscillations on top of a constant DC-current
(see, e.g. [3]). It is known that the auditory nerve
passes very precise information about the cochlea os-
cillation to the auditory nuclei [3], where phase-locked
computation is a candidate to compute the pitch of a
complex sound [4]. To this end, we are interested to
test whether generic synchronization schemes [2] are
able to explain physiological measurements [5, 6] from
auditory nerve fibers. We choose a novel discrete neu-
ron model [7, 8] because of its simplicity, preserving
the limit-cycle property. We simulate the cochlea os-

cillations by a nonlinear electronic Hopf-cochlea [9, 10],
followed by a model of IHC [11]. In section 2, the three
models are introduced. The general synchronization
scheme for sinusoidally driven regularly spiking neu-
rons is verified in section 3. In section 4, the three
models are connected, and the synchronization pro-
file for pure tone stimulation is derived. Amplitude-
modulated (AM) auditory stimuli are used in section
5 to test whether synchronization of the model neuron
upon the driving waveform is able to account for exper-
imental results. Finally, we discuss the importance of
cochlear processing in shaping the information trans-
mitted to the auditory nuclei.

2. Model elements description

Hopf cochlea: Recently, we have developed a
biomorphic electronic Hopf-cochlea [9, 10]. The
core of this electronic hearing sensor is a cascade
of subcritical Hopf oscillators with characteristic
frequencies cf , modeling the local amplification by
the OHC. Each amplifier is followed by a 6th-order
Butterworth filter modeling the viscous fluid. In this
way, we have created a very robust and sensitive
hearing sensor. It has been shown that the sensor
successfully reproduces the characteristics of mam-
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Figure 1: Envelope distortions of 100% amplitude-modulated
input tones (bold lines: ideal sinusoidal envelopes). a) electronic
Hopf-cochlea: Measurement: cf = fcarrier = 7.04kHz, fmod =
176Hz (upper) and fmod = 704Hz (lower figure), respectively
(adapted from [10]). b) Chinchilla cochlea, cf = fcarrier =
8kHz, fmod = 200Hz (upper) and fmod = 800Hz (lower figure),
respectively (adapted from [12]).
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malian hearing, that is: the compressive nonlinearity,
the high sensitivity for weak sounds and the nonlinear
phenomena of two-tone suppression and combination
tone generation [9, 10].
For AM signals, the stimuli used in this contribution,
our Hopf cochlea responds almost undistinguishable
to biological measurements, see the asymmetric
distortion of the envelope in Fig. 1.

Inner hair cells: The inner hair cells (IHC)
are implemented in software due to the currently most
detailed model [11]. It implements the differential
equation for the membrane voltage V (t),

V̇ =
1
C1

((V1−V )gT (U)+(V2−V )gf (V )+(V3−V )gs(V )),

(1)
where the transfer function gT (U) relates the cilia
displacement U to an internal conductance of the
model. It has the form of a second-order Boltzmann
function [11]. gf and gs, the models internal sig-
moid nonlinearities, represent fast respectively slow
Potassium currents, see [11] for details and parameter
values.

Rulkov model neurons: The neuron model
used in this contribution has been introduced by
N.F. Rulkov in 2002 [7]. It is a phenomenological
model based on the limit-cycle property of biological
neurons, implemented as a two-dimensional discrete
map. It is given by the mapping

xn+1 = fα(xn, xn−1, yn + βn), (2)
yn+1 = yn − µ(xn + 1) + µσ + µσn, (3)

where xn is the fast and yn is the slow dynamical vari-
able. Parameters α and σ are control parameters that
select the desired spiking behavior. Input variables
βn = βe · In and σn = σe · In are proportional to the
synaptic input current In. The nonlinear function fα

is given by:

fα(xn, xn−1, u) (4)

=





α
1−xn

+ u xn ≤ 0
α + u 0 < xn < α + u and xn−1 ≤ 0
−1 xn ≥ α + u or xn−1 > 0

If α < 4, there is no bursting in the model. In the ab-
sence of synaptic inputs for α < 4, the model converges
to a stable fixed point for σ < σth = 2 −

√
α/(1− µ)

and shows regular spiking behavior (a limit-cycle) for
σ > σth with an almost linear dependence of the spik-
ing frequency fspikes on the DC input current IDC ,
see [8]. In this contribution, we use the parameter val-
ues for the regular spiking (RS) neuron α = 3.65, σ =
0.06, µ = 0.0005, σe = 1, βe = 0.133, respectively
a slightly modified version of Eqs. 2 and 4 that ac-

counts for spike-afterhyperpolarization and models a
fast spiking (FS) neuron, see [8].

3. Simplified model: Sinusoidally driven regu-
larly spiking neurons

In the situation, where a limit-cycle neuron is driven
by a waveform with both an DC and AC component,
the DC component determines the intrinsic spiking
frequency f0 of the neuron. The additional AC com-
ponent acts as a driving frequency fdrive. For weak
interaction strength, depending on the value of the
frequency ratio f0/fdrive, phase-locking along Arnold
tongues can be expected, see e.g. [2]. In this section,
we verify this property for Rulkov neurons and de-
termine the size of the phase-locked regions. For the
value of IDC = 0.1 in the RS neuron, leading to a spik-
ing frequency of f0 = 0.01129 spikes/iteration= 225.8
Hz, the neuron is driven by a sinusoidal input cur-
rent IAC(t) = A sin 2πfdrivet (time conversion slightly
modified if compared to [8], ∼ 90 input samples be-
tween two spikes). For this setting, we evaluate the
winding number ω, defined as

ω =
]intrinsic oscillations

]oscillations of the forcing
. (5)

Depending on the ratio Ω = f0/fdrive, the neuron syn-
chronizes in different regimes of the winding number
ω, see Fig. 2. The overall picture of synchronization
along Arnold tongues is obtained in Fig. 3, where the
winding number ω is plotted against Ω in Fig. 3a at
A = 0.05, and as a function of both {Ω, A} in Fig. 3b.
In both figures, plateaus of constant rational winding
numbers ω = p/q, p, q ∈ N indicate regions of stable
phase- and frequency-locking. Observations:
- The characteristic staircase of Fig. 3a demonstrates
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Figure 2: Synchronization in the sinusoidally driven Rulkov
model. Spiketrain of the fast variable xn as a function of discrete
timesteps n. The neuron receives an input current I(t) = IDC +
IAC = 0.1+A sin 2πfdrivet. a) Unperturbed, A=0: The neuron
is regularly spiking with intrinsic frequency f0 = 0.01129 spikes
/ iteration. b) A = 0.05, Ω = f0/fdrive = 0.9, 1/1-locking.
c) A = 0.05, Ω = 0.48, 1/2-locking. d) A = 0.05, Ω = 1.7,
2/1-locking.
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Figure 3: Arnold tongues in the sinusoidally driven Rulkov
model. a) Winding number ω as a function of the frequency ratio
Ω = f0/fdrive at fixed interaction strength A = 0.05. Typical
plateaus show the Arnold tongues of stable phase-locking. b)
Threedimensional plot of ω as a function Ω, A. Plateaus show
the size of the Arnold tongues.

that Arnold tongues exist for all rational winding num-
bers ω = p/q, although their widths rapidly decrease
with increasing periodicity q.
- Moreover, the plateaus in Fig. 3 show that only the
tongues with integer ω occupy a large portion of the
parameter space {Ω, A}.
- The Arnold tongues are shifted towards smaller val-
ues of Ω; the sinusoidal driving thus has an excitatory
effect on the neurons spiking behavior.

4. Full model: Response to pure tone stimula-
tion

In this section, we connect the three models cochlea-
IHC-neuron in a way that accounts for experimen-
tal results. Generally, a sampling rate of 20kHz is
used and matched to a timestep of the fast spiking
(FS) neuron model. The cochlea sections amplify in-
put tones in a frequency- and amplitude-dependent
way around their pre-defined cf , see [9]. It is rel-
atively easy to match the cochlea output to a cilia
displacement of the IHC by scaling the maximal volt-
age of 10V to a maximal displacement of 100nm [11].
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Figure 4: Input vs. output frequency characteristics at
cf = 800 Hz. The colors label the cochlea input intensi-
ties: −40dB(10V ) (blue),−50dB(10V ) (purple),−60dB(10V )
(green). The model neuron synchronizes to the input up to
∼ 1kHz for strong inputs; at low intensities it looses synchro-
nization outside the frequency band around cf = 800Hz.

Then, the IHC output is matched to the synaptic
neuron input such that the intrinsic neuron oscilla-
tion resulting from the DC-component of the IHC
output V IHC

out synchronizes to its AC-component for
frequencies up to ∼ 1.2cf , and cochlea input inten-
sities down to at least −50dB(10V). The choice of a
simple proportionality factor relating In and V IHC

out is
justified by the fact that synapses to auditory nerve
fibers have mainly voltage-dependent ion channels [3].
The values that generate correct input vs. output fre-
quency characteristics at cf = 800Hz in Fig. 4 are:
In = 40·(V IHC

out −V IHC
Rest )+0.02, where V IHC

Rest = −0.058
is the resting potential of the IHC.

5. Temporal and spectral characteristics of re-
sponses to AM stimuli

At this point, it is of interest whether the pure tone
setting of the previous section is able to reproduce
experimental results for complex sounds. We choose
amplitude-modulated (AM) tones for several reasons:
They are easy to be generated and exploit the nonlin-
ear features of the Hopf-Cochlea (combination tones).
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Figure 5: Model neuron response to AM stimuli. a) Model
neuron spiketrain of the fast variable xn (blue) and synaptic in-
put current In (purple) as a function of timestep n. cf = 800Hz,
fcarrier = 800Hz, fmod = 100Hz. b,c): Comparison of tem-
poral model response including gaussian noise at the synaptic
input b) with experimental data c) (adapted from [5]). The
spikes are counted with respect to the period of the modula-
tion. cf = 800Hz, fcarrier = 800Hz, fmod = 100Hz. d,e)
Comparison of spectral model response d) with experimental
data e) (adapted from [6]). cf = 2.3kHz, fcarrier = 2.3kHz,
fmod = 100Hz. For comments see text.
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Experiments with AM sounds play a major role in
the understanding of human pitch perception [4], and
there are several physiological measurements of audi-
tory nerve fibers available [5, 6].
For a stimulation of the cochlea at cf = 800Hz with
fcarrier = 800Hz, fmod = 100Hz in Fig. 5a, the neuron
responds with a periodic spiking pattern (blue line in
Fig. 5a). A close inspection reveals that the neuron
synchronizes to those IHC oscillations (purple line in
Fig. 5a) that are large enough to trigger spikes. Be-
cause of the slow variable yn, there is a phase shift
compared to the IHC output. In this noise-free sim-
ulation, there is no spike jitter, what makes it some-
what difficult to compare the model response to the
biological data of Fig. 5c from [5]. Therefore, we add
a gaussian random noise with mean 0 and variance
κ to the synaptic input In. The spontaneous neuron
spiking rate then depends linearly on κ, not shown.
We choose a spontaneous rate of ∼ 10Hz at κ = 0.075,
as measured in Fig. 5c. The AM stimulus is exposed
to the cochlea for 60 seconds. Spikes are counted in
a period histogram relative to the modulation period
of the signal in Fig. 5b. To compare the model out-
put with the spectral measurement Fig. 5e from [6]
at cf = 2.3kHz, fcarrier = 2.3kHz, fmod = 100Hz,
the same procedure as above (pure tone stimulation,
noise, period histogram) is repeated, and the period
histogram is Fourier transformed to obtain the final
spectrum of Fig. 5d. Although the spike jitter of
Figs. 5b,d has been introduced artificially, the figures
show a close match to the biological measurements.
We therefore conclude that the forms of the period
histogram Fig. 5c and auditory nerve spectrum Fig. 5e
are a direct consequence of the neuron synchronization
upon the stimulus as observed in Fig. 5a.

6. Discussion

In this contribution, we have verified for the Rulkov
model that the synchronization of a limit-cycle neu-
ron to a time-continuous waveform is a rather general
phenomenon, and can be explained within the theory
of locking along Arnold tongues. The Rulkov model
neuron was then tested to serve as a model of audi-
tory nerve fibers. The main problem was to realisti-
cally model the transmission from the IHC output to
the synaptic input of the neuron. However, a simple
scaling by a proportionality factor leads over a large
interval to a persistent synchronization upon the audi-
tory stimulus. Moreover, the resulting firing patterns
remain stable throughout this interval, and are aston-
ishingly close to biological measurements. We thus
conclude that the synchronization ability of the neu-
rons is enough to explain the form of the resulting
firing patterns.
From our experiments, we are able to discuss the influ-

ence of the Hopf-cochlea nonlinearities onto the spike-
trains in auditory nerve fibers. In the time domain,
the asymmetric distortion of the envelope Fig. 1 leads
to a broadening of the range in the envelope, where
carrier frequency oscillations are able to trigger syn-
chronized spikes in Fig. 5a, leading to the experimen-
tally observed number of peaks in Fig. 5c. In the fre-
quency domain, combination tone generation by the
Hopf-cochlea is responsible for all peaks other than
{fcarrier, fcarrier ± fmod} (and multiples thereof in-
troduced by the Fourier transform) in Fig. 5d. The
cochlea thus represents the major processing stage of
the signal before arriving at the auditory nuclei. Ac-
cording to our study, the role of auditory nerve fibers
at low cf is to synchronize upon the signal and thus
to transmit the cochlea output characteristics.
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