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Abstract—Many mathematical models in various
scientific fields are represented by complicated differ-
ential equations and such models cannot be solved an-
alytically. Therefore, numerical analysis using com-
puters is essential. However, when the system is more
complicated, the analysis time is longer. In this study,
we propose a fast numerical analysis method using
FPGA (Field Programmable Gate Array). FPGA is a
reconfigurable integrated circuit, and it is good at par-
allel processing. We develop the calculators of bifurca-
tion diagrams and basins of attraction on the FPGA
board. As a result, we obtain at most 22 times faster
calculator than using CPU.

1. Introduction

Mathematical models are important to capture the
essence of complicated natural phenomena. We con-
sider that one of the most important mathematical
models is the Hodgkin-Huxley neuron model [1]. Since
the publication of this model, many conductance-
based neuron models have been proposed. Among
them, we are interested in cardiac cell models be-
cause the suppression of arrhythmia through studies
of mathematical models can reduce the risk of sudden
cardiac arrest. A recent model consists of 45 ordinary
differential equations [2]. Usually, such mathemati-
cal models are described by nonlinear equations. The
nonlinear differential equations cannot be solved ana-
lytically. Thus, numerical analysis using computers is
effective. In numerical analysis, more accuracy needs
more computational costs. Moreover, detailed mathe-
matical models also require much time for simulation.
Thus, we must construct a fast numerical calculator
with low electric power consumption.

In nonlinear dynamical systems, we observe compli-
cated phenomena such as quasi-periodic states, chaotic
states and co-existence of attractors. The generation
of these phenomena is related to bifurcations. The bi-
furcation is defined by the qualitative change of the
solutions due to a perturbation of parameter values.
It is very important to understand bifurcation struc-
ture in parameter space because dynamical diseases
such as Cheyne-Stokes respiration and chronic granu-
locytic leukemia are caused by bifurcations [3]. How-
ever, studying parameter space in complicated dy-

namical system (high-dimensional dynamical system)
needs much time because we should investigate bifur-
cations in many combinations of parameters contained
in the system.

In this paper, we design nonlinear analysis tools
for bifurcations and basins of attraction using FPGA
(Field Programmable Gate Array). FPGA is a recon-
figurable integrated circuit, and it is good at paral-
lel processing [4, 5, 6]. By numerical experiment, we
show that our method is faster than the conventional
numerical calculation using CPU.

2. Preliminaries

2.1. Fixed-point Operation

In this research, we use the 32 bits (1, 7 and 24 bits
for the sign, integer and fractional part) fixed-point
number representation for operation. Our FPGA has
a multiplier with 18 bits. We use the Booth algorithm
and the multiplier on FPGA for multiplication. The
multiplier on FPGA is faster than the Booth method;
however, accuracy becomes worse. Thus, we compare
these methods on FPGA to check the relationship be-
tween speed and accuracy. The CORDIC algorithm [7]
is used for the calculation of mathematical functions.

2.2. Model Equations

Duffing’s equations which describe the dynamics of
the oscillatory circuit with a nonlinear inductor [8] are
given by:

dﬁ =Y
o (1)
—~ = —ky — c3z® — By + Bcoswt.
dt
We fix the parameter values as kK = 0.1, ¢3 = 1.0,
w =1, and By = 0.075.
The BVP (Bonhéffer-van der Pol) model [9] with an
external force is given by:

d 1.

o c(y +x — —x3 + hsinwt)
& _ fl(x+b —a)

dt ¢ Y '

-594 -



We fix the parameter values as a = 0.0, b = 0.4, and
¢ = 1.5. This model was proposed as simplification of
the Hodgkin-Huxley neuron model and its bifurcation
structures of the single model [10, 11] and the coupled
models [12, 13, 14] were widely studied.

We define the Poincaré map for Egs. (1) and (2) as

T:R? = R € T(§\) = $(2m/w, €, N),

where ¢ = [z,y]T, \ is a parameter vector, 1(t, &g, \)
is assumed to be a solution of Eq. (1) or (2) with an
initial condition & = [zo,y0]T at t = 5. Then the
I-periodic point £* of Eq. (1) or (2) is defined as

& =TI N =0. (3)

3. Results

We use the computer (CPU: i5-560m with clock fre-
quency 2.66 GHz) for software calculation (compiler:
Borland beeb5) and the FPGA board (DE2-115). This
board has the VGA port, so results (diagrams) are
shown on a display through this port. FPGA (Cyclone
IV E: clock frequency is 50 MHz and logic elements are
114,480) is equipped on the board.

3.1. Basin of attraction

If attractors of the system coexists, then the basin
of attraction gives us useful information of initial state
dependency. A plane of initial states on a grid is con-
sidered, and we check which attractor is obtained from
each initial point. We put distinct color for attractors.
Usually, the basin boundary gives a stable manifold
of a saddle type periodic solution. Thus, using the
basin we can visualize the global structure of stable
manifolds. Moreover, its fractalization is related to
homoclinic points [15, 16], and its qualitative change
is related to synchronization [17].

Figures 1, 2, and 3 show the basins of attrac-
tion for Duffing’s equations using the software, FPGA
(Booth method) and FPGA (multiplier), respectively.
There coexist a fixed point and two-periodic points at
B = 0.15. From the initial states colored by blue, we
observe the fixed point as an attractor. Two-periodic
points are obtained from the initial states colored by
red and green. Increasing the value of B to 0.185,
four-periodic points appear as a result of the period-
doubling bifurcation of the two-periodic points. The
boundaries of four colors are fractalized because of
the appearance of homoclinic points [18]. Compar-
ing between the results of the software and FPGA,
the shape of each colored region is almost the same;
FPGA can calculate the basin of attraction. Table
1 shows the comparison of runtime for the software,
FPGA (Booth), and FPGA (multiplier). When the
degree of parallelism is one, the software is faster than

Table 1: Results for Duffing’s equations

degree of runtime occupied
parallelism | (hh:mm:ss) | LE (%)

software 1 01:49:7 -
FPGA 1 22:55:44 4
(Booth) 2 11:27:52 6

44 00:31:16 99.8
FPGA 1 16:13:05 3
(multiplier) 2 08:06:32 5

54 00:18:02 99.8

FPGA. When the degree is two, FPGA (Booth) and
FPGA (multiplier) occupied 6 and 5% of total logic
elements (LE). Considering the increasing rate from
the no parallel processing, FPGA (Booth) and FPGA
(multiplier) can have 44 and 54 parallel processings at
most. Thus, runtimes are estimated to be 31 and 18
minutes, which is 3.5 and 6.1 times faster than using
software.
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Figure 1: Basin of attraction of Duffing’s equations
obtained by using software.

Figure 2: Basin of attraction of Duffing’s equations
obtained by using FPGA (Booth).

3.2. Bifurcation diagram

We show results of calculating bifurcation diagrams
for the BVP model. The meaning of colors is shown
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(a) B=0.15. (b) B =0.185.

Figure 3: Basin of attraction of Duffing’s equations
obtained by using FPGA (multiplier).

Table 2: Color assignment

period ‘ color H period ‘ color .
1 Dluc 7 white 0.5 « 1.4
2 red 8 slate blue (a) Software.
3 magenta 9 pink 1.0
4 green 10 purple
5 cyan non-period or black
6 yellow divergence

in Tab. 2 [19]. Figures 4(a), 4(b), and 4(c) represent
the result of using the software, FPGA (Booth), and
FPGA (multiplier), respectively. Comparing these fig-
ures, we can see that both methods of FPGA obtain
the almost same result as the software’s. The BVP

0.0

. . 0.5 w 1.4
model without the external force has an oscillatory so-
lution at the parameter values we decided. The pa- (b) FPGA (Booth)
rameter region of the entrainment of the frequency 10

for the oscillatory solution is colored by blue. Other
colors indicate the regions of the existence of stable
sub-harmonic oscillations. The results of runtime are
shown in Tab. 3. The degree of parallelism is changed
from 1 to 2, occupation of the FPGA (Booth) and h
FPGA (multiplier) are 3 % and 2 % raise. Thus, theo-
retically 32 and 61 degrees of parallelism are possible,
and it is 3.2 and 22 times faster than using the soft-

ware.
0.0
Table 3: Results for BVP model (¢c) FPGA (multiplier)
degree of runtime occupied
parallelism | (hh:mm:ss) | LE (%)
software 1 021714 . Figure 4: Bifurcation diagram of BVP model.
FPGA 1 22:55:44 5
(Booth) 2 11:27:52 8
32 00:42:59 99.8
FPGA 1 06:20:17 3
(multiplier) 2 03:10:09 5
61 00:06:14 99.8
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4. Conclusion

We developed nonlinear analysis tools on FPGA.
The calculators of bifurcation diagrams and basins of
attraction were constructed on FPGA. We confirmed
the accuracy of our calculators and showed that our
method is faster than the conventional method using
CPU. Also, the calculator on FPGA has an advantage
of using less electric power. We are now trying to use
OpenCL to combine different platforms such as CPU,
GPU, DSP, and FPGA.
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