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Abstract—An adaptive feedback method for track-
ing and stabilizing unknown or slowly varying saddle
type steady states of conservative dynamical systems
is described. We demonstrate that a conservative sad-
dle point can be stabilized with neither unstable nor
stable filter technique. Meanwhile, a controller, in-
volving both filters in parallel, works perfectly. As a
specific example, the Lagrange point L2 of the Sun–
Earth system is discussed and a general second order
saddle model is considered.

1. Introduction

In astrodynamics the stability of the spacecrafts at
the Lagrange points L1 and L2, also in related to them
the Lyapunov and the Lissajous orbits is a very chal-
lenging problem. For example, several recent space
missions use the Lissajous orbit around the L2 of the
Sun–Earth system. Specifically, the Lagrange points
belong to the wide class of the saddle type unstable
steady states (USS) of conservative dynamical sys-
tems. A straightforward idea to stabilize an USS is to
apply a proportional feedback force. Classical control
methods, using proportional feedback, require a math-
ematical model of a system or at least the location of
the USS in the phase space for the reference point.
However, in many practical situations neither the ex-
act models nor the coordinates of the reference point
are accessible. Moreover, the position of a reference
point may slowly vary with time in an unpredictable
manner because of external perturbations. Therefore
adaptive, that is model-independent and reference-free
methods, automatically locating the USS are prefer-
able.

The simplest adaptive technique for stabilizing the
USS is based on the derivative controller [1, 2, 3].
A feedback force in the form of a derivative kdx/dt
derived from an observable x(t) introduces artificial
dynamical losses and consequently damps the oscilla-
tions. An important feature of the derivative is that it
does not influence the position of the USS, since it van-

ishes when the variable x(t) approaches the goal state.
The method has been successfully applied to diverse
nonlinear dynamical systems, for example to stabilize
a laser [1], a chaotic Chua circuit [2] and an electro-
chemical reaction [3]. However, the technique is rather
sensitive to high-frequency noise unavoidably present
in the experimental signal x(t), since it requires a dif-
ferentiation of the observable.

More advanced adaptive method for stabilizing the
USS employs low- (high-) pass filter in the feedback
loop [4, 5, 6, 7, 8, 9]. Provided the cut-off frequency
of the filter is low enough, the filtered image v(t) of
the observable x(t) asymptotically approaches the USS
and therefore can be used as a reference point in the
proportional feedback. This method has been verified
in several experimental systems, including electrical
circuits [4, 5, 6, 7] and lasers [8, 9].

Two more techniques, though originally designed to
control unstable periodic orbits, can be used to sta-
bilize the USS as well. The first is the time-delayed
feedback method proposed by Pyragas [10, 11]. Un-
der appropriate choice of the delay value the method
is able to stabilize the steady states [5, 6, 12]. The
second one is the notch-filter method [13]. Though
developed to stabilize periodic orbits, it is also capa-
ble to control the steady states in the case at least
two notch filters with different and incommensurate
resonance frequencies are applied.

However, all the mentioned techniques, as well as
the recently suggested modification with the Taylor
predictor [14] and extention to strongly nonlinear re-
gions [15], are restricted to unstable nodes and unsta-
ble spirals only. They fail to stabilize the saddle type
states (the USS with an odd number of real positive
eigenvalues).

To get around the problem of the odd number lim-
itation Pyragas et al. [16, 17] proposed to use an un-
stable filter, that is a bold idea to fight one instabil-
ity with another instability. The technique has been
demonstrated to stabilize saddles in several mathemat-
ical models [16, 17, 18, 19] also in the experiments with
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an electrochemical oscillator [16, 17] and the Duffing–
Holmes type electronic circuit [18, 19].

Unfortunately, this advanced method is limited to
dissipative dynamical systems only. It is not applica-
ble to conservative systems. The situation is somewhat
similar to the problem of the famous OGY method
[20, 21], in the sense that it does not work in the
Hamiltonian systems. The limitation of the Pyragas’
unstable filter method can be proved analytically using
the well-known Hurwitz stability criteria. According
to these criteria the necessary condition for stabiliz-
ing a saddle state is that the cut-off frequency of the
applied unstable filter is lower than the damping coef-
ficient of the system under control. While damping is
zero (!) in the conservative systems under definition.
Formally, to fulfill this stability criteria, the cut-off
frequency could be set negative. However, this would
mean that the unstable filter should become a stable
one and, therefore, inappropriate to stabilize a saddle.

In this paper, we demonstrate that the conserva-
tive saddles can be successfully stabilized by means of
the recently proposed conjoint filter [22], that involves
both an unstable and stable subfilters. Previously such
a combined filter has been employed to overcome the
problem of latencies in the feedback loop when stabi-
lizing saddles in the dissipative systems.

2. Lagrange point L2

We consider dynamics of a body of mass µ, e.g. a
spacecraft at the Lagrange point L2 of the Sun–Earth
system (Fig. 1). The dynamics taking into account
the centrifugal force and the forces of gravity is given
by

µR̈ = µΩ2(R0 + R) −
γµM

(R0 + R)2
−

γµm

R2
+ P. (1)

Here γ is the gravitational constant, M and m is the
mass of the Sun and the Earth, respectively, R0 is the
distance of the Earth from the Sun, R is the distance
of the Lagrange point L2 from the Earth, P is in gen-
eral unknown external force, which is either constant
or slowly varying in time. Since the Lagrange point
L2 lies on the same line as the Sun and the Earth, the
angular velocity Ω in the centrifugal force of the body

M m m
R0 R

Sun Earth Lagrange

W W

Figure 1: Lagrange point L2 of the Sun–Earth system.
The Sun diameter, the Earth diameter, the distances
R0 and R are not in scale.

at the Lagrange point is just the same as that of the
Earth: Ω2 = γM/R3

0
. After introducing the dimen-

sionless quantities r = R/R0 and ε = m/M Eq. (1)
can be presented as

r̈ − Ω2F (r, ξ) = 0, (2)

F (r, ξ) = 1 + r −
1

(1 + r)2
−

ε

r2
+ ξ, (3)

ξ =
P

µR0Ω2
. (4)

The nonlinear function F (r, ξ) is depicted in Fig. 2.
The steady state of the system r0 can be found from
an algebraic equation F (r0, ξ) = 0. The value of r0

can be roughly estimated from a simple formula r0 ≈
(ε/3)1/3, which is valid for (r0, ξ) ≪ 1. Linearization
of the system around the steady state point (r = r0 +
x, |x| ≪ r0) yields:

ẍ − Λ2x = 0, Λ2 = Ω2F ′(r0, ξ). (5)

Here F ′(r0, ξ) is the derivative of F (r, ξ) with respect
to r at the point r0. We note, that F ′(r0, ξ) > 0.
Consequently, Λ2 is always positive and the eigen-
values of the corresponding characteristic equation
λ2 − Λ2 = 0 are λ1,2 = ±Λ, confirming that the
steady state r0 is the saddle type USS. The value
λ−1

1
= Λ−1 can serve as an estimate of the char-

acteristic runaway time τL from the Lagrange point:
τL = Λ−1 = Ω−1/

√

F ′(r0) ≈ YE/6π, where YE is the
orbital period of the Earth around the Sun, that is
the Earth year; thus the τL ≈ 19 days. Further, time
in Eq. (5) can be normalized to the value of Λ−1, so
that the equation becomes model-independent and de-
scribes behavior of any conservative dynamical system
in the vicinity of a saddle point:

ẍ − x = 0. (6)
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Figure 2: Nonlinear function F (r) with ε = 3.10−6.
The insert shows that the force F (r) is nearly linear
in the range from 0.009 to 0.011, that is around the
Lagrange point r0 = 0.01 ± 0.001 = 0.01 ± 10%.
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3. Stabilizing a body at the Lagrange point

First of all we apply the unstable filter [16, 17] trying
to stabilize the saddle point:

ẍ − x = k1(u − x), (7)

u̇ = ω1(u − x). (8)

The corresponding characteristic equation is

λ3 − ω1λ
2 + (k1 − 1)λ + ω1 = 0. (9)

There is a considerable drop of the largest Reλ with
k1, however it remains positive indicating instability
of the closed loop (Fig. 3a).

Though the stable filter technique is not expected
to stabilize a saddle steady state, we consider it here
for comparison:

ẍ − x = k2(v − x), (10)

v̇ = ω2(x − v). (11)

From its characteristic equation

λ3 + ω2λ
2 + (k2 − 1)λ − ω2 = 0. (12)

one can make sure that the result is practically the
same (Fig. 3b) as for the unstable filter. The controller
fails to stabilize the saddle.

However, when combined in parallel:

ẍ − x = k1(u − x) + k2(v − x), (13)

u̇ = ω1(u − x), (14)

v̇ = ω2(x − v), (15)

the two filters give unexpectedly excellent result as
evident from the solution of the characteristic equation

λ4 + (ω2 − ω1)λ
3 − (k1 + k2 − 1 − ω1ω2)λ

2

+ [k1ω2 − k2ω1 − (ω2 − ω1)]λ (16)

+ ω1ω2 = 0.

Indeed, the largest eigenvalue crosses zero at a cer-
tain value of the the feedback coefficient k1 (Fig. 3c).
The stability properties can be also checked using the
Hurwitz criteria.

4. Concluding remarks

We have suggested using an adaptive control
method for stabilizing unknown and slowly varying
saddle type steady states of conservative dynamical
systems. The controller is model-independent and
reference-free. It does not require knowledge of either
the mathematical model or the position of the steady
state, but automatically tracks the state and stabilizes
it. The controller involves both, the unstable filter and
the stable filter in the feedback loop. While seperately
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Figure 3: Dependence of the real part of the eigenval-
ues Reλ on the control gains ki. (a) unstable filter only
with ω1 = 0.1. (b) stable filter only with ω2 = 0.1. (c)
unstable and stable filters in parallel with ω1 = 0.3,
k2 = 15, ω2 = 7.

each of the filters seems to be useless and senseless
in the case of conservative dynamical systems, when
combined in one they give an excellent stabilizing re-
sult. In the nearest future we going to construct an
undamped electronic circuit, imitating the dynamical
behaviour of a body at the Lagrange point of the con-
servative Sun–Earth system. The experimental results
will be published elsewhere.
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