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Abstract—The cellular computing concept is very pow-
erful method for a locally connected network such like cel-
lular neural network. Owing to its parallelization perfor-
mance, this method is very suitable for a large scale prob-
lem. The covariance structure analysis is one of the well-
known method for validating the given model. However,
its computational cost is very high. In this paper, we pro-
pose a novel covariance structure analysis method based
on cellular neural network for fast processing. Moreover,
this method enables the CNN to acquire learning ability.
The experiment results suggest that the proposed method is
an equivalence frame work of the conventional covariance
structure analysis.

1. Introduction

Machine learning methods have been used for data min-
ing to obtain the important information and relationship
from massive amount of data. Additionally, information
can be analyzed visually using the passing chart. Conven-
tionally, decision tree methods which are applicable meth-
ods for MLC++ [1], OOGDs [2] and C4.5 [3], based on
so-called ’if-then’ rules have been often used for data min-
ing. However, the decision tree methods are not suitable
for the information which includes continuous data.

The back propagation neural network (BPNN) is one
of the effective method for learning a model based on a
teacher signal. However, it is difficult to know from a theo-
retical viewpoint what the learning result shown about the
model. Because of its problem, the covariance structure
analysis becomes a one of the popular technique for find-
ing the social and natural phenomena to realize notional
relationship from statistical information. As a result, the
causal relationship can be clarified from the composition
concept and observation variable. Although the covariance
structure analysis is the effective method for a data mining,
the computational cost is high.

In this paper, we propose a CNN [4] learning algorithm
based on the covariance structure analysis [5] to predict the
meaningful information including continuous data. In the
conventional covariance structure analysis method, since it
can be thought that the endogeneous vaiable and the exo-
geneous variable are generated based on the respective fac-
tors, these variables are distinguished clearly. However, it
can be said that these variables are just a weight coefficient

between elements of the covariance structure. This enables
us to introduce a cellular computing concept into the co-
variance structure analysis. The advantages of introducing
our concept are that the covariance strcture can be regarded
as a cellular connected network, its connection weight cor-
responds to the endogeneous or exogeneous variables, and
the equilibrium solution of proposed network quaran tees
the optional coefficients of the covariance structure. It is
proved that the dynamics of CNN converges to the equi-
librium points, if the A-template is symmetric. However,
in general, coefficients of A-template for the covariance
structure are asymmetric. Hence, we use the the BFGS
method for solving the CNN dynamics with asymmetric A-
template. The BFGS method for solving a nonlinear differ-
ential equation, are used to reduce the computational cost
than Davidon-Fletcher-Powell (DFP) method. The impor-
tant point is that the both methods can solve stiff systems
which have large difference among eigenvalues. The re-
sulted parameters are used as weights on edges in the signal
flow graph which works for unknown input data.

2. Proposed Cellular Structural State and Measure-
ment Equations

The model of the causal relationship is expressible in the
covariance structure by two equations. The observed vari-
able u is a known information data. The average μx and the
real covariance matrix S is calculated using the observed
variable u. The variables, n and l show the dimension of
the data sets. Let x ∈ Rn be the state variable vector, then
the cellular structural equation is expressed by

ẋ = −x + Af (x) + T, (1)

where the f (x) is nonlinear function defined by

f (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 x ≥ 1

x −1 ≤ x ≤ 1

−1 x ≤ −1
(2)

A ∈ Rn×n is a weight matrix which expresses connection
between the state variables, and T ∈ Rn is the error variable
for the state variables.

The cellular measurement equation should be used to
express the casual relations among the observed variables

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 357 -



u ∈ Rl and the state variable x. The measurement equation
is given by

u = μx + C f (x) + e, (3)

where C ∈ Rl×n is a weight matrix which expresses connec-
tion between the state variables x and observed variables u
for their average μx, and e ∈ Rl is the error variables for
the observed variables.

Each i-th row vector of the matrix A and C includes a
weight cofficient wi j on the edge from a cell from C j to
Ci. Generally, if the model is given by a signal flow graph,
A and C become sparse matrices. Therefore, it is possible
to reduce the computational cost using the sparse matrix
calculation technique.

3. Optimization Method for Machine Learning in Pro-
posed Method

In order to estimate the parameters, our proposed method
uses the BFGS method and the Backward Euler method for
solving a nonlinear differential equation.

3.1. Fit Function

The variables, l and p show the dimension of the data
sets. Let z be the model standardized vector, then it is given
by

z = u − μx. (4)

Let Su ∈ Rl×l be the covariance matrix E(zz′) for the state
variables in linear region of piece-wise linear function, then
the matrix is derived theoretically from the cellular struc-
tural equation and the measurement equation as follows;

Su = E(zz′)
= GA0Φ0A′0G

′ (5)

where

G = (I,O),

A0 = (A,C), (6)

Φ0 = (Δ,Ψ).

I is the unit matrix and O is the zero matrix, Δ and Ψ are
covariance matrices of e and T, and X′ is a transposed ma-
trix of X.
Let θ ∈ Rp be vector of population parameters which are el-
ements of the matrices A,C,Δ andΨ, then the Generalized
Least Squares (GLS) method is applied to the fit function
as

fGLS (θ) =
1
2
tr((S − Su)S−1)2, (7)

where S ∈ Rl×l is the real sample covariance matrix given
by

S =
1
N
ZZ′, (8)

Table 1: Multivariate data

Observed Item S 1 S 2 . . . S 50

u1 Color 5 3 . . . 4
u2 Style 4 4 . . . 4
u3 Power performance 4 4 . . . 4
u4 Suspension setting 3 3 . . . 3

where Z ∈ Rl×l is the data matrix standardized by expected
value from Table 1 and N is the number of samples and
tr(ẋ) means a trace of the matrix X.

The matrix Su is approached to S by using optimization
calculation to obtain all parameters of sparse matrices and
errors. We used both the Backward Euler method and the
BFGS method for solving the quasi-Newton method.

3.2. Proposed Algorithm

The function (7) should be minimized in order to deter-
mine the parameters, that is, the solution of (7) is given by

g(θ) = 0, (9)

where g(θ) = ( fGLS

θ ).
The convergency of (9) depends on its initial value.

Therefore we get a solution of (9) as a solution of the Back-
ward Euler method of the following differential equation;

θ̇ = g(θ). (10)

3.2.1. Backward Euler Method

The Backward Euler method is implicit, in which it uses
the differentiation at the next time step, instead of the cur-
rent one. Implicit methods are the most practical method
for solving stiff systems. This method approximates the
solution fGLS (θ) at virtual time tk+1 = tk + h by solving the
implicit equation:

θk+1 = θk + hg(θk+1) (11)

where g(θk) is the gradient vector evaluated at θk.
Since equation (11) may be nonlinear, solving it in gen-

eral requires an iterative solution method. In order to suit
the function (11), it solved by

F(θk) = θk − θk−1 − hg(θk). (12)

In this paper, quasi-Newton method is provided for solving
the implicit equation.

3.2.2. Broyden-Fletcher-Goldfab-Shanno (BFGS) method

A general function f (θ) can be approximated in each it-
eration by a truncated Taylor series;

f (θ) ≈ f (θn)+g(θn)
′(θ−θn)+ 12(θ−θn)

′H(θn)(θ−θn), (13)
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where H(θn) ∈ Rp×p is the matrix of second-order partial
derivatives of function with respect to θn. It is important
to use the inverse of the Hessian matrix in our algorithm as
described bellow.

However, since the Hessian leads to algorithmic and
computational complexities, an approximation technique
of the inverse Hessian is often used. We use the Broyden-
Fletcher-Goldfab-Shanno (BFGS) method which is one of
quasi-Newton methods. The update formula is as follows:

Hn+1 = Hn + (1 +
u′Hnu
z′u

)
zz′

z′u
− zu′Hn +Hnuz′

u′z
, (14)

where
z = −αHnF(θn),

u = F(θn+1) − F(θn).

3.2.3. Quasi-Newton Method

An implicit method requires the solution of a nonlinear
equation at each time step. For one step of the Backward
Euler method, we use the quasi-Newton method given by

F(θk+1) = θk+1 − θk − hg(θk+1). (15)

In order to satisfy the equation (11), F(θk+1) is solved by
the Newton method.

(n+1)θk+1 =
(n)θk+1 − (F(

(n)θk+1)
(n)θk+1

)−1F((n)θk+1) (16)

= (n)θk+1 − (I − hg(
(n)θk+1)
(n)θk+1

)−1F((n)θk+1) (17)

The computation of the matrix ( g(
(n)θk+1)
(n)θk+1

) is very difficult
task. Here, the approximation technique BFGS is used. We
replace (I−h g((n)θk+1)

(n)θk+1
) by the approximation (Eq. (14)). The

flowchart of proposed method is given in Fig. 1.

4. Simulation Results

The model of ”Purchase of a Car” is used as an exam-
ple of analysis of the cellular covariance structure. The
observed data sets are shown in Table data.

This data sets were collected from a survey of 50 peo-
ple. The four observed variables u1, u2, u3, u4 are defined
as observed variables in Table 1.

The state variable of x1 means a design, the state variable
of x2 means a performance, and the state variable of x3
means a value of a car. The parameters of ζ1, ζ2 and ζ3 are
the error variables.

The SFG corresponding to the basic equations is given
in Fig. 2.

A design and a performance are determined by a value
of a car. A user can set the edges in advance. Some param-
eters of the matrices are set to 0 before learning. It is useful
to set some parameters previously, if possble.

Figure 1: Flowchart of proposed method

It is very important that the coefficient matrices are
sparse and the SFG is a cellular network. The weights on
the edges incident to a cellC j are corresponding to the tem-
plate like that of a cellular neural network.

The cellular structural state equation of the model for
”Purchase of a Car” is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β12 β13
0 0 β23
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (x1)
f (x2)
f (x3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ1
ζ2
ζ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

The cellular measurement equation can be also defined
by the user as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3
u4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1
μ2
μ3
μ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ11 0 0
κ21 0 0
0 κ32 0
0 κ42 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (x1)
f (x2)
f (x3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Fig. 3 and Fig. 4 show the learning curves for the model
of ”Purchase of a Car”. The number of steps for Back-
ward Euler method is shown on the horizontal axis. The
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Figure 2: SFG of ”Purchase of a Car” model

fit function, derived such that the covariance matrix Cu is
approached to S is shown on the vertical axis.

Figure 3: The simulation result by the DFP method.

Fig. 5 shows the comparison result of estimate param-
eters between proposed and original method [5]. The pa-
rameters are shown on the horizontal axis. The value of
each parameter is shown on the vertical axis.

5. Conclusion

In this paper, a cellular structual analysis method for co-
variance structure has been proposed. The proposed CNN
structure corresponds to the given model and its dynam-
ics is utilized for estimating the parameters that describe
the given model. The experimental results show that our
method is an equivalent method of the conventional co-
variacne structure analysis with fast computational perfor-
mance.
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Figure 4: The simulation result by the BFGS method.

Figure 5: Estimate Parameters.

References

[1] R. Kohavi, D. Sommerfield, and J. Dougherty, ”Data
Mining using MLC++ : A machine learning library
in C++”, International Journal of Artificial Intelligence
Tools, Vol. 6, No. 4, pp. 537-566. 1997.

[2] R. Kohavi, ”Wrappers for Performance Enhancement
and Oblivious Decision Graphs”, Ph.D. dissertation
Stanford, CA: Comp. Sci. Department of Computer
Science, Stanford University 1995.

[3] Quinlan, J. Ross, ”C4.5: Programs for machine learn-
ing”, Morgan Kaufmann Publishers, 1993.

[4] L. O. Chua and L. Yang, “Cellular neural networks:
theory,” IEEE Trans. Circuits Syst., vol. 35, no. 10, pp.
1257–1272, Oct. 1988.

[5] Y. Zennyoji, N. Ohashi, M. Yamauchi, and M. Tanaka,
”Cellular Analysis of Covariance Structure for Data
Mining by Backward Euler Method,”In Proc. 2005 Intl.
Symp. Nonlinear Theory and its Appl. (NOLTA 2005),
Bruges, Belgium, Oct. 2005.

- 360 -


	Navigation page
	Session at a glance
	Technical program

