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Abstract—This study considers attitude control of a 3D
space robot of two rigid bodies with initial angular mo-
mentum. First, we explain the universal joint model with
initial angular momentum. We next apply model predictive
control to an attitude control problem of the universal joint
model with initial angular momentum, and show a simu-
lation result to confirm reduction of calculation amount.
Then, a simulation with a model error of initial angular mo-
mentum is performed in order to check robustness of model
predictive control.

1. Introduction

It is well known that for a space robot in 3-dimensional
outer space, its conversation law of total angular momen-
tum plays a role of nonholonomic constraints, and hence
the robot’s attitude can be changed by transforming its
shape. A lot of reseaches on such a space robot have been
done in the fields of analytic mechanics, control theory and
robotics [1, 2, 3]. In most researches on control of space
robots, it is assumed that space robots do not have initial
angular momentum. In realistic situations, for example,
when a mother ship gives a space robot out, space robots
often have initial angular momentum. Hence we have fo-
cused on 3D space robots with initial angular momentum
and derived a control strategy based on the near-optimal
control method [5]. However, since the model of a space
robot with initial angular momentum is quite complicated
and the proposed control law is feedforward-type, a huge
quantities of calculation amount is needed. Moreover, the
control law does not have the characteristic of robustness
for the physical parameters of the system. The purpose
of this study is to overcome the disadvantages mentioned
above by using model predictive control that consists of
feedback-type control laws.

2. 3D Space Robot with Initial Angular Momentum

First, the 3D space robot model treated throughout this
paper is explained. We consider a space robot that consists
of two rigid bodies and exists in 3D space as shown in Fig.
1. Two rigid bodies (Rigid Body 1 and 2) are connected by
a universal joint via two links (Link 1 and 2), respectively.
We represent coordinates of the inertial space, Rigid Body
1 and 2 byC0, C1 andC2, respectively. We now assume

that the origins ofC1 andC2 correspond to the centroids of
Rigid Body 1 and 2, respectively. LetAi ∈ S O(3) be the
attitude of Rigid Bodyi (i = 1,2) with respect to the inertial
spaceC0, andwi ∈ R3 be the angular velocity of Rigid
Body i. Note thatŵi = AT

i Ȧi holds1. We use the notations;
mi : the mass of Rigid Bodyi (ϵ = m1m2/(m1 +m2)), l i : the
length of Linki, si = [00−l i ]T ∈ R3: the vector showing the
position of the joint with respect toC0, I i ∈ R3: the inertia
tensor of Rigid Bodyi (Ji = I i + ϵ ŝT

i ŝi , J12 = ϵ ŝT
1AT

1A2ŝ2).
Next, we denote the angles of Link 1 and 2 of the universal
joint asθ1, θ2 ∈ R (θ = [ θ1 θ2 ]T ∈ R2), respectively. Then,

A:=AT
1A2=

 sinθ1 sinθ2 cosθ1 − sinθ1 cosθ2
cosθ2 0 sinθ2

cosθ1 sinθ2 − sinθ1 − cosθ1 cosθ2


represents the shape of the space robot andw2 = ATw1 +

w = AT
2A1w1 + w holds for the angular velocity of the joint

w ∈ R3, ŵ = ATȦ. Assuming that the space robot has initial
angular momentumP0 ∈ R3, we have the conservation law
of the total angular momentum as

(A1J1 + A2JT
12)w1 + (A2J2 + A1J12)w2 = P0. (1)

Now, we setIu := J1+AJ2AT+AJT
12+J12AT and parametrize

A1 by using the Cayley-Rodrigues parameter (3). Note that

w1 = U1(α)α̇, U1(α) =
2(I − α̂)
1+ αTα

(2)

holds for the angular velocityw1 and Cayley-Rodrigues pa-
rameterα. Moreover, we refer angular velocities of the
universal joint as control inputs, that is,u1 := θ̇1, u2 := θ̇2,
then we have the next:

w =

 cosθ2
0

sinθ2

︸      ︷︷      ︸
b1

u1 +

 0
1
0

︸︷︷︸
b2

u2. (4)

Therefore, settingq := [ θT αT ]T ∈ R5, from (1)–(4) we
obtain the universal joint model with initial angular mo-
mentumas (5), which is represented as a nonlinear affine

1ˆ is the operator that changes a 3-dimensional vectorv = [v1 v2 v3 ]T ∈

R3 into a 3× 3 skew-symmetric matrix: ˆv =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
.
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A1(α) =
1

1+ ||α||2

 1+ α2
1 − α2

2 − α2
3 2(α1α2 − α3) 2(α1α3 + α2)

2(α1α2 + α3) 1− α2
1 + α

2
2 − α2

3 2(α2α3 − α1)
2(α1α3 − α2) 2(α2α3 + α1) 1− α2

1 − α2
2 + α

2
3

 (3)

 θ̇1θ̇2
α̇

 =
 0

0
U−1

1 I−1
u AT

1P0

︸               ︷︷               ︸
f (q)

+

 1 0
0 1

−U−1
1 I−1

u (AJ2 + J12)b1 −U−1
1 I−1

u (AJ2 + J12)b2

︸                                                               ︷︷                                                               ︸
g(q)

[
u1

u2

]
(5)

J =
1
2

∫ t+T(t)

t
(α(τ) − αd)TQ(α(τ) − αd)dτ +

1
2

∫ t+T(t)

t
u(τ)TRu(τ)dτ +

1
2

(α(t + T) − αd)TS(α(t + T) − αd) (6)

control system with 5 states and 2 inputs and does not have
any equilibrium points. For the universal joint model (5),
we have shown that (5) is strongly locally accessible at
any state, and if control inputs are sufficiently large, (5)
is small-time locally controllable [5].

Rigid Body 2

Rigid Body 1 

Universal Joint 

Fig. 1 : Universal Joint Model

3. Attitude Stabilization Control

Since the universal joint model with initial angular mo-
mentum (5) does not have any equilibrium points and can-
not stand still, we cannot treat normal control problems
such as a stabilization problem to the origin. Therefore,
this section considers the following control problem. Pro-
belm 1 contains, for example, the situation where we move
a solar panel of a space robot to the direction of the sun.

Problem 1: For the universal joint model with initial angu-
lar momentum (5), find control inputs such that the attitude
of Rigid Body 1α is stabilized to a desired valueαd.

In this paper, we take the model predictive control ap-
proach in order to solve Problem 1. Especially, we use
the C/GMRES method[4], which is a real-time optimiza-
tion algorithm. In a simulation, we use the parameters
of the universal joint model:l1 = l2 = 1, m1 = m2 =

1, I1 = I2 = diag{1/2, 1/2, 1 }, initial angular momen-
tum: P0 = [ 0.1 0.1 − 0.1 ]T, the initial state: q0 =

[ π/2 π/2 1 1 1 ]T, the desired attitude:αd = [ 0 0 0 ]T.
For the C/GMRES method, we use the evaluation function
(6) with the weight matricesQ = diag{4.0, 1.5, 5.0}, R =
diag{0.01, 0.01}, S = diag{0.8, 0.2, 0.4} and the evaluation
intervalT(t) = T(1− e−at), T = 6.5, a = 0.05. Moreover,
we also use the parameters of controller: the division num-
ber of the evaluation interval:N = 50, the stabilization pa-
rameter of the continuation method:ζ = 20, the number of
iterations of the GMRES method:kmax = 3, the sampling
time: ∆t = 0.05 [s], the simulation time: 20 [s].

Simulation results are shown in Fig. 2 and 3. Fig. 2
illustrates the time series ofθ andα, and Fig. 3 depicts the
snapshot of the universal joint model. From these results,
it can be confirmed that the attitude of Rigid Body 1α is
stabilized to the desired valueαd = 0. The computation
time of this simulation is 1.45 [s], and hence we can see that
the computation time is drastically reduced in comparison
with the case of the near-optimal control method [5].

4. Robustness for Initial Angular Momentum

In parameters of a space robot, the mass, the inertia mo-
ment and the length can be easily measured. However,
since the value of initial angular momentum changes ac-
cording to circumstances, we have the difficulty to measure
it. So this section verifies the availability of the model pre-
dictive control approach in the case where there exists a
modeling error in initial angular momentum.

In a simulation, we use the same parameters of the uni-
versal joint model except initial angular momentum as the
ones shown in Section 3. We set the measured initial an-
gular momentum:P̃0 = [ 0.1 0.1 − 0.1 ]T and the real
initial angular momentum:P0 = [ 0.07 0.07 − 0.01 ]T.
We also use the weight matrices of the evaluation function
(6) asQ = diag{2.0, 1.0, 3.0}, R = diag{0.01, 0.01}, S =
diag{0.85, 0.2, 0.4}. Moreover, we also use the same pa-
rameters of controller as the ones shown in Section 3.

Fig.4 shows the time series ofθ andα, and Fig. 5 il-
lustrates the snapshot of the universal joint model. From
these results, it turns out that the attitude of Rigid Body 1
α is stabilized to the desired valueαd = 0 despite model
error, and hence the controller obtained by the model pre-
dictive control approach has robustness for initial angular
momentum.
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Fig. 2 Time Series ofθ andα

(a) t =0.0000 (b) t =4.0000 (c) t =8.0000

(d) t =12.0000 (b) t =16.0000 (c) t =20.0000

Fig. 3 Snapshot of Universal Joint Model

5. Conclusion

In this paper, we have considered attitude stabilization
control of the universal joint model with initial angular mo-
mentum via model predictive control approach. Simulation
results have indicated that the attitude of Rigid Body 1 is
stabilized to the desired value with a reduced calculation
amount compared to our previous work, and robustness

with respect to initial angular momentum can be confirmed.
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Fig. 4 Time Series ofθ andα (with Model Error of Initial Angular Momentum)

(a) t =0.0000 (b) t =4.0000 (c) t =8.0000

(d) t =12.0000 (b) t =16.0000 (c) t =20.0000

Fig. 5 Snapshot of Universal Joint Model (with Model Error of Initial Angular Momentum)
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