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Abstract– Recently, GPU is used for general purpose of 
computing. In this study, we implement particle swarm 
optimization (PSO) algorithms, which are applicable to 
various engineering applications, on GPU, and evaluate the 
performance using benchmark functions. Also we compare 
PSO with one with stochastic coupling. 
 
1. Introduction 
 
GPU is a graphic controller that is dedicated to display 
images to screen for PC, but it is used for general purpose 
of computations [1], [2]. Since the parallel feature with 
many high speed core processors enables us to process a 
large amount of data. As one of the most imperative 
computations that need heavy computation power, 
optimization algorithms are picked up. 
 In this paper, we focus how to accelerate PSO algorithm. 
PSO was proposed by Kennedy and Eberhart in 1995, and 
it is a metaheuristic optimization algorithm inspired by 
swarm intelligence of birds and fish [3]. PSO has generated 
much wider interests due to the simple concept and 
implementation easiness. The PSO algorithm consists of 
multiple individual agents called “particles” and searches 
the solution space of an objective function by the particles 
moving around. Each particle flies toward the position of 
the current global best and its own best position in history. 
To find a good solution in wide searching area over many 
dimensions, many particles would be necessary. Then, the 
finding process would require huge computational efforts 

To reduce the computation cost, we implement PSO on 
GPU. Finding process of PSO is called dynamics that is 
expressed by difference equations. Since the dynamics of a 
particle is independent to another particle, it is computed in 
parallel to another particle. This means that all the 
dynamics can be calculated efficiently on GPU. However, 
the selection of global best position is essentially serial 
computation, which requires many access to global 
memory of GPU. To reduce the number of access, we 
introduce lbset PSO which has sparse connection with 
neighboring particles. Moreover, robustness of PSO with 
stochastic coupling is known [4], [5]. Hence, we also 
introduce the PSO with stochastic coupling. 

In the illustrative examples using benchmark functions, 
we confirm that the GPU implementation is maximally 20 
times faster than the CPU. 

 

2. GPU and CUDA 
 
CUDA, which is an integrated development environment 
for GPU, is provide by NVIDIA [2]. Using a large number 
of computing cores within the processor, it becomes 
recently possible to use for general-purpose computations 
with dramatically faster speed. A program of CUDA 
consists of host and device codes operated on CPU and 
GPU, respectively. 
Shared and global memories can be used in CUDA. 

Shared memory is shared by many threads and global 
memory can be accessed by not only threads but host as 
shown in Fig. 1. Although shared memory is fast, the 
capacity is small and up to 16KB per block is available. On 
the other hand, capacity of global memory is large, but the 
accessible speed is slow. All threads can read from and 
write into global memory. Therefore, if a specific addressed 
content in global memory is accessed several times, the 
users should use shared memory as a cache in order to 
accelerate the operations. 

In CUDA, up to 65535 × 65535 × 512 threads can be run 
with streaming processor of GPU. To process such a large 
number of threads effectively, the concept of grid and 
blocks is introduced, and threads are managed 
hierarchically.  
 

 
 
Figure 1:  Memory model of CUDA 
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3. GPU Implementation 
 
3.1. PSO 
 
The dynamics of PSO is described by  
 
௜௝ሺ݇ݔ ൅ 1ሻ ൌ ௜௝ݔ ൅ ௜௝ሺ݇ݒ ൅ 1ሻ,                     (1) 
௜௝ሺ݇ݒ ൅ 1ሻ ൌ ௜௝ݒ߱ ൅ ߮ଵ ሺܷ଴,ଵሻ൫ ௜ܲ௝ሺ݇ሻ െ ௜௝ሺ݇ሻ൯ݔ ൅	  

              	߮ଶ ሺܷ଴,ଵሻ൫ ௚ܲ௝ሺ݇ሻ െ  ௜௝ሺ݇ሻ൯,            (2)ݔ
 

In (1) and (2), ݒ௜௝ is the velocity, ݔ௜௝ is the position, ߮ଵ, ߮ଶ 
are acceleration coefficients, and ω is an inertia weight. 
ሾܷ଴,ଵሿ is a random number that is uniformly distributed in 

the range [0, 1] for each dimension. ௜ܲ௝	ሺ݇ሻ is a minimum 
point (personal best position) that each particle is ever 
found. ௚ܲ௝	ሺ݇ሻ  is a minimum point (global best position) 
that is discovered by the swarm so far. 
PSO does not require differentiability, which implies that 

it is a direct search algorithm capable of solving nonlinear 
optimization problems by only information of the objective 
function. However, for multimodal function the swarm is 
caught to a sub-optimal solution. Hence, probability 
binding to the swarm is introduced in order to overcome 
this issue [4], [5]. 
 
3.2. Implementation  
 
With the structural features of GPU, we can process a 

large amount of data simultaneously. It is possible to 
calculate (1) and (2) in parallel. Then, we assign each 
particle to a thread, and the dynamics expressed by (1) and 
(2) is calculated in parallel to another particle. However, 
since the minimum point ௚ܲ௝	ሺ݇ሻ for the swarm has the star 
structure as shown in Fig. 2, the selection becomes a 
sequential processing basically and is done after all the 
threads are synchronized. Then, efficiency of the 
computations can be lowered. Hence, we introduce a ring-
shaped coupling as shown in Fig. 3(a), which is called lbest 
PSO. In lbest-PSO, the minimum point (locally global best) 
from the three adjacent particles including itself is extracted. 
Therefore, the selection of minimum point is easier than 
that in standard PSO, and we do not have to halt all the 
threads to select the global best. Hence, we use lbset PSO 
and implement it on GPU. 
To avoid being trapped to a local minimum, the coupling 

in (2) is stochastically changed at every iteration. Although 
this idea is realized in IPSO [4], [5], it is too complex to 
implement it on GPU. Therefore, in order to take advantage 
of the feature of IPSO, we consider a random connection 
shown in Fig. 3(b). Although a particle in lbest PSO is 
connected to the right and left neighboring particles, it is 
coupled to two particles randomly. Using such connections, 
we expect that a better solution can be obtained. Since the 
PSO has random coupling, we call it stochastically                                                                                                                         
connected PSO (SCPSO). 
 

 
Figure 2: Relationship between each particle and the 
global best position. 
 

 
(a)                             (b) 

Figure 3: PSOs used for GPU implementation. (a) lbest 
PSO. (b) SCPSO. 
 
4. Results 
 
We implemented lbest-PSO and SCPSO on GPU and 
evaluated by using the objective functions given in Table 1. 
The environments used for evaluation are shown in Table 
2. The computation times using CPU and GPU are 
respectively shown in Table 3, where lbest PSO was used. 
The comparison of computation times for SPSO is given in 
Table 4. In the results of Tables 3 and 4, 10,000 iterations 
were done for both PSOs with the Sphere function. The 
computation times were measured on Env. 1 in Table 2. For 
all the dimensions of dependent variables of objective 
functions, the results of CPU with 10 particles were faster 
than those of GPU. The computation times by GPU were 
compatible to the CPU for 16 × 16 particles, they were 
slower than those of CPU except for one example. 
For the case of 256 × 256 particles, the GPU 

implementation for both lbest-PSO and SCPSO was about 
20 times faster than the CPU. However, efficiency was 
reduced when dimension is 20. This is because access to 
global memory increases with higher dimensions. 
 Figures 4 and 5 show the convergence curves of lbest 

PSO and SCPSO for the Sphere function. The convergence 
of GPU is slightly different from that of GPU. The 
difference relies on each single-precision floating point 
operation. For lbest PSO in Fig. 4, all the trials are 
converged. Although convergence has been achieved for 
the trial of 5 dimensions for SCPSO as shown in Fig. 5, 
minimum solutions are not obtained for the trials for 10, 15, 
and 20 dimensions. PSOs with stochastically coupling are 
generally more robust than standard PSO in searching 
ability. However, lbest-PSO with stochastic coupling 
presented as Fig. 3(b) could not find a good solution. This 
means that we need to contrive ways to couple. 

●：connected particle ○：isolated particle
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Figures 6 and 7 show the convergence curves of lbest PSO 
and SPSO, respectively, for the Rosenbrock function. The 
convergence curve of GPU is largely different from that of 
CPU. This situation also appeared for the 3rd De Jong 
function. Using another environment (Env 2. in Table 2), 
we wrote the convergence curve for the Ronsenbrock 
function. This result is shown in Fig. 8, where a large 
difference in convergence between CPU and GPU was not 
observed. From this fact, the differences in convergence in 
Figs. 6 and 7 would depend on the environment used for 
evaluation. 
 
5.  Conclusions 
 
We have presented implementation of particle swarm 
optimization algorithms on GPU and evaluated it using 
benchmark functions. As a result, we could achieve 20 
times speed-up in comparison to the CPU. Also we 
evaluated PSO with stochastic coupling, but could not 
confirm its superiority.  In the near future, we will improve 
the performance of PSO with stochastic coupling. 
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Table 1: Test objective functions used for evaluation. 

Sphere ݂ሺݔሻ ൌ ෍൫ݔௗ
ଶ െ 1൯			ݔ ∈ ሾെ5.12,5.12ሿ

஽

ௗୀଵ

 

3rd De Jong ݂ሺݔሻ ൌ ෍|ݔௗ െ 1|
஽

ௗୀଵ

ݔ			

∈ ሾെ2.048,2.048ሿ 

Rosenbock 

݂ሺݔሻ

ൌ ෍100൫ݔௗ
ଶ െ ௗାଵ൯ݔ

ଶ
൅ ሺ1 െ ௗሻଶݔ

	

஽

ௗୀଵ

 

ݔ ∈ ሾെ5.12,5.12ሿ 

 
 
 
 
 
 

Table 2: Environments used to evaluate the 
performance of GPU implementation. 

 Env. 1 Env. 2 

CPU Intel® Core™ i7 Intel® Core™ i5 

Memory 5954 MB 4096 MB 

GPU Tesla C2050 GeForce 9800GT 

Global 
Memory 

2.62 GB 512 MB 

Shared 
Memory 

48 KB 16 KB 

Clock Rate 1.15 GHz 1.5 GHz 

 
 
Table 3 Comparison of computation times for lbest PSO. 

Dimensions Particles
CPU 
[sec.] 

GPU 
[sec.] 

CPU/
GPU

5 

10 0.07 2.26 0.03

16×16 1.36 2.56 0.53

256×256 357.2 17.85 20.01

10 

10 0.08 2.29 0.03

16×16 2.79 2.83 0.99

256×256 705.96 30.69 23.00

15 

10 0.15 2.29 0.07

16×16 3.60  3.19 1.13 

256×256 948.36  48.48 19.56 

20 

10 0.150 2.30 0.07 

16×16 3.16  3.64 0.87 

256×256 1127.67  77.32 14.58 
 
 
Table 4: Comparison of computation times for SCPSO. 

Dimensions Particles
CPU 
[sec] 

GPU 
[sec] 

CPU
/GPU

5 

10 0.080 2.280 0.04

16×16 1.190 2.590 0.46

256×256 358.550 19.430 18.45

10 

10 0.110 2.280 0.05

16×16 2.010 2.820 0.71

256×256 690.140 32.890 20.98

15 

10 0.150 2.280 0.07

16×16 3.470 3.160 1.10

256×256 856.560 51.700 16.57

20 

10 0.180 2.300 0.08

16×16 4.700 3.620 1.30

256×256 789.510 77.849 10.14
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Figure 4: Convergence curves for lbest PSO (Sphere). 

 
 

 
Figure 5: Convergence curves for SCPSO (Sphere). 

 
 

 
Figure 6: Convergence curves for lbest PSO 
(Rosenbrock). 

 

 
Figure 7: Convergence curves for SCPSO (Rosenbrock). 
 
 

 
Figure 8: Convergence curves for SCPSO (Rosenbrock). 
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