

GPU Implementation and its Evaluation of Particle Swarm Optimization

Satoshi Kondo†, Kenichiro Tanaka‡, and Yuichi Tanji†‡

Department of Electronics and Information Engineering,
Kagawa University,

Hayashi-cho 2217-20, Takamatsu, 761-0396 Japan
Email: †s15g466@stu.kagawa-u.ac.jp, ‡s14g468@stmail.eng.kagawa-u.ac.jp,

†‡tanji@eng.kagawa-u.ac.jp

Abstract– Recently, GPU is used for general purpose of
computing. In this study, we implement particle swarm
optimization (PSO) algorithms, which are applicable to
various engineering applications, on GPU, and evaluate the
performance using benchmark functions. Also we compare
PSO with one with stochastic coupling.

1. Introduction

GPU is a graphic controller that is dedicated to display
images to screen for PC, but it is used for general purpose
of computations [1], [2]. Since the parallel feature with
many high speed core processors enables us to process a
large amount of data. As one of the most imperative
computations that need heavy computation power,
optimization algorithms are picked up.
 In this paper, we focus how to accelerate PSO algorithm.
PSO was proposed by Kennedy and Eberhart in 1995, and
it is a metaheuristic optimization algorithm inspired by
swarm intelligence of birds and fish [3]. PSO has generated
much wider interests due to the simple concept and
implementation easiness. The PSO algorithm consists of
multiple individual agents called “particles” and searches
the solution space of an objective function by the particles
moving around. Each particle flies toward the position of
the current global best and its own best position in history.
To find a good solution in wide searching area over many
dimensions, many particles would be necessary. Then, the
finding process would require huge computational efforts

To reduce the computation cost, we implement PSO on
GPU. Finding process of PSO is called dynamics that is
expressed by difference equations. Since the dynamics of a
particle is independent to another particle, it is computed in
parallel to another particle. This means that all the
dynamics can be calculated efficiently on GPU. However,
the selection of global best position is essentially serial
computation, which requires many access to global
memory of GPU. To reduce the number of access, we
introduce lbset PSO which has sparse connection with
neighboring particles. Moreover, robustness of PSO with
stochastic coupling is known [4], [5]. Hence, we also
introduce the PSO with stochastic coupling.

In the illustrative examples using benchmark functions,
we confirm that the GPU implementation is maximally 20
times faster than the CPU.

2. GPU and CUDA

CUDA, which is an integrated development environment
for GPU, is provide by NVIDIA [2]. Using a large number
of computing cores within the processor, it becomes
recently possible to use for general-purpose computations
with dramatically faster speed. A program of CUDA
consists of host and device codes operated on CPU and
GPU, respectively.
Shared and global memories can be used in CUDA.

Shared memory is shared by many threads and global
memory can be accessed by not only threads but host as
shown in Fig. 1. Although shared memory is fast, the
capacity is small and up to 16KB per block is available. On
the other hand, capacity of global memory is large, but the
accessible speed is slow. All threads can read from and
write into global memory. Therefore, if a specific addressed
content in global memory is accessed several times, the
users should use shared memory as a cache in order to
accelerate the operations.

In CUDA, up to 65535 × 65535 × 512 threads can be run
with streaming processor of GPU. To process such a large
number of threads effectively, the concept of grid and
blocks is introduced, and threads are managed
hierarchically.

Figure 1: Memory model of CUDA

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 590 -

3. GPU Implementation

3.1. PSO

The dynamics of PSO is described by

௜௝ሺ݇ݔ ൅ 1ሻ ൌ ௜௝ݔ ൅ ௜௝ሺ݇ݒ ൅ 1ሻ, (1)
௜௝ሺ݇ݒ ൅ 1ሻ ൌ ௜௝ݒ߱ ൅ ߮ଵ ሺܷ଴,ଵሻ൫ ௜ܲ௝ሺ݇ሻ െ ௜௝ሺ݇ሻ൯ݔ ൅	

 	߮ଶ ሺܷ଴,ଵሻ൫ ௚ܲ௝ሺ݇ሻ െ ௜௝ሺ݇ሻ൯, (2)ݔ

In (1) and (2), ݒ௜௝ is the velocity, ݔ௜௝ is the position, ߮ଵ, ߮ଶ
are acceleration coefficients, and ω is an inertia weight.
ሾܷ଴,ଵሿ is a random number that is uniformly distributed in

the range [0, 1] for each dimension. ௜ܲ௝	ሺ݇ሻ is a minimum
point (personal best position) that each particle is ever
found. ௚ܲ௝	ሺ݇ሻ is a minimum point (global best position)
that is discovered by the swarm so far.
PSO does not require differentiability, which implies that

it is a direct search algorithm capable of solving nonlinear
optimization problems by only information of the objective
function. However, for multimodal function the swarm is
caught to a sub-optimal solution. Hence, probability
binding to the swarm is introduced in order to overcome
this issue [4], [5].

3.2. Implementation

With the structural features of GPU, we can process a

large amount of data simultaneously. It is possible to
calculate (1) and (2) in parallel. Then, we assign each
particle to a thread, and the dynamics expressed by (1) and
(2) is calculated in parallel to another particle. However,
since the minimum point ௚ܲ௝	ሺ݇ሻ for the swarm has the star
structure as shown in Fig. 2, the selection becomes a
sequential processing basically and is done after all the
threads are synchronized. Then, efficiency of the
computations can be lowered. Hence, we introduce a ring-
shaped coupling as shown in Fig. 3(a), which is called lbest
PSO. In lbest-PSO, the minimum point (locally global best)
from the three adjacent particles including itself is extracted.
Therefore, the selection of minimum point is easier than
that in standard PSO, and we do not have to halt all the
threads to select the global best. Hence, we use lbset PSO
and implement it on GPU.
To avoid being trapped to a local minimum, the coupling

in (2) is stochastically changed at every iteration. Although
this idea is realized in IPSO [4], [5], it is too complex to
implement it on GPU. Therefore, in order to take advantage
of the feature of IPSO, we consider a random connection
shown in Fig. 3(b). Although a particle in lbest PSO is
connected to the right and left neighboring particles, it is
coupled to two particles randomly. Using such connections,
we expect that a better solution can be obtained. Since the
PSO has random coupling, we call it stochastically
connected PSO (SCPSO).

Figure 2: Relationship between each particle and the
global best position.

(a) (b)

Figure 3: PSOs used for GPU implementation. (a) lbest
PSO. (b) SCPSO.

4. Results

We implemented lbest-PSO and SCPSO on GPU and
evaluated by using the objective functions given in Table 1.
The environments used for evaluation are shown in Table
2. The computation times using CPU and GPU are
respectively shown in Table 3, where lbest PSO was used.
The comparison of computation times for SPSO is given in
Table 4. In the results of Tables 3 and 4, 10,000 iterations
were done for both PSOs with the Sphere function. The
computation times were measured on Env. 1 in Table 2. For
all the dimensions of dependent variables of objective
functions, the results of CPU with 10 particles were faster
than those of GPU. The computation times by GPU were
compatible to the CPU for 16 × 16 particles, they were
slower than those of CPU except for one example.
For the case of 256 × 256 particles, the GPU

implementation for both lbest-PSO and SCPSO was about
20 times faster than the CPU. However, efficiency was
reduced when dimension is 20. This is because access to
global memory increases with higher dimensions.
 Figures 4 and 5 show the convergence curves of lbest

PSO and SCPSO for the Sphere function. The convergence
of GPU is slightly different from that of GPU. The
difference relies on each single-precision floating point
operation. For lbest PSO in Fig. 4, all the trials are
converged. Although convergence has been achieved for
the trial of 5 dimensions for SCPSO as shown in Fig. 5,
minimum solutions are not obtained for the trials for 10, 15,
and 20 dimensions. PSOs with stochastically coupling are
generally more robust than standard PSO in searching
ability. However, lbest-PSO with stochastic coupling
presented as Fig. 3(b) could not find a good solution. This
means that we need to contrive ways to couple.

●：connected particle ○：isolated particle

- 591 -

Figures 6 and 7 show the convergence curves of lbest PSO
and SPSO, respectively, for the Rosenbrock function. The
convergence curve of GPU is largely different from that of
CPU. This situation also appeared for the 3rd De Jong
function. Using another environment (Env 2. in Table 2),
we wrote the convergence curve for the Ronsenbrock
function. This result is shown in Fig. 8, where a large
difference in convergence between CPU and GPU was not
observed. From this fact, the differences in convergence in
Figs. 6 and 7 would depend on the environment used for
evaluation.

5. Conclusions

We have presented implementation of particle swarm
optimization algorithms on GPU and evaluated it using
benchmark functions. As a result, we could achieve 20
times speed-up in comparison to the CPU. Also we
evaluated PSO with stochastic coupling, but could not
confirm its superiority. In the near future, we will improve
the performance of PSO with stochastic coupling.

References

[1] NVIDA: http://www.nvidia.com/page/home.html
[2] T. Aoki and A, Nukada, First CUDA Programming,

Kougakusha, 2009 (in Japanese).
[3] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm

optimization –an overview,” Swarm Intell, vol. 1, pp. 33-57,
2007.

[4] H. Matsusita, Y. Nishio and T. Saito “Particle swarm
optimization with novel concept of complex network,” in
Proc. of NOLTA’10, pp. 197-200, Sep. 2010.

[5] H. Matsushita, Y. Nishio and T. Saito, “Behavior of
independent-minded particle swarm optimization,” in Proc.
NCP’11, pp.103-106, Mar. 2011.

Table 1: Test objective functions used for evaluation.

Sphere ݂ሺݔሻ ൌ ෍൫ݔௗ
ଶ െ 1൯			ݔ ∈ ሾെ5.12,5.12ሿ

஽

ௗୀଵ

3rd De Jong ݂ሺݔሻ ൌ ෍|ݔௗ െ 1|
஽

ௗୀଵ

ݔ			

∈ ሾെ2.048,2.048ሿ

Rosenbock

݂ሺݔሻ

ൌ ෍100൫ݔௗ
ଶ െ ௗାଵ൯ݔ

ଶ
൅ ሺ1 െ ௗሻଶݔ

	

஽

ௗୀଵ

ݔ ∈ ሾെ5.12,5.12ሿ

Table 2: Environments used to evaluate the
performance of GPU implementation.

 Env. 1 Env. 2

CPU Intel® Core™ i7 Intel® Core™ i5

Memory 5954 MB 4096 MB

GPU Tesla C2050 GeForce 9800GT

Global
Memory

2.62 GB 512 MB

Shared
Memory

48 KB 16 KB

Clock Rate 1.15 GHz 1.5 GHz

Table 3 Comparison of computation times for lbest PSO.

Dimensions Particles
CPU
[sec.]

GPU
[sec.]

CPU/
GPU

5

10 0.07 2.26 0.03

16×16 1.36 2.56 0.53

256×256 357.2 17.85 20.01

10

10 0.08 2.29 0.03

16×16 2.79 2.83 0.99

256×256 705.96 30.69 23.00

15

10 0.15 2.29 0.07

16×16 3.60 3.19 1.13

256×256 948.36 48.48 19.56

20

10 0.150 2.30 0.07

16×16 3.16 3.64 0.87

256×256 1127.67 77.32 14.58

Table 4: Comparison of computation times for SCPSO.

Dimensions Particles
CPU
[sec]

GPU
[sec]

CPU
/GPU

5

10 0.080 2.280 0.04

16×16 1.190 2.590 0.46

256×256 358.550 19.430 18.45

10

10 0.110 2.280 0.05

16×16 2.010 2.820 0.71

256×256 690.140 32.890 20.98

15

10 0.150 2.280 0.07

16×16 3.470 3.160 1.10

256×256 856.560 51.700 16.57

20

10 0.180 2.300 0.08

16×16 4.700 3.620 1.30

256×256 789.510 77.849 10.14

- 592 -

Figure 4: Convergence curves for lbest PSO (Sphere).

Figure 5: Convergence curves for SCPSO (Sphere).

Figure 6: Convergence curves for lbest PSO
(Rosenbrock).

Figure 7: Convergence curves for SCPSO (Rosenbrock).

Figure 8: Convergence curves for SCPSO (Rosenbrock).

0 2000 4000

10−12

10
−6

100

[iterations]

[v
al

ue
]

CPU−5d

CPU−10d

CPU−20d

CPU−15d

GPU−5d

GPU−10d

GPU−15d

GPU−20d

0 2000 4000

10−12

10
−6

100

[iterations]

[v
al

ue
]

CPU−5d

CPU−10d

CPU−15d

CPU−20d

GPU−5d

GPU−10d

GPU−15d

GPU−20d

0 5000 10000

10−12

10−6

100

CPU−5d

CPU−10d

CPU−15d

CPU−20d

GPU−5d

GPU−10d

GPU−15d

GPU−20d

[iterations]

[v
al

u
e]

0 2000 4000

10−12

10−6

100

[interations]

[v
al

ue
]

CPU−5d

CPU−10d

CPU−15d

CPU−20d

GPU−5d

GPU−10d

GPU−15d

GPU−20d

0 5000 10000

10−12

10−6

10
0

CPU−5d

CPU−10d

CPU−20d

CPU−15d

GPU−5d

GPU−10d

GPU−20d

GPU−15d

[iteraitons]

[v
al

ue
]

- 593 -

	Navigation Page
	Session at a glance

