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Abstract— The circuit-based FDTD method for transient anal-
ysis of a mutually coupled system, where the inverse inductance,
i.e. reluctance matrix is introduced. In an example with the
full capacitance and reluctance matrices, we confirm that the
proposed method is 23 times faster than HSPICE and 458
times faster than Berkeley SPICE. In the case with the sparse
capacitance and reluctance matrices, the proposed method is 69
times faster than HSPICE and 1349 times faster than Berkeley
SPICE, whereas a small-scale circuit is analyzed.

I. INTRODUCTION

With rapid progress of VLSI technologies, the designers
of VLSI, package, and board have suffered from the signal
and power integrity problems. To overcome these problems,
routing of VLSI, package, and board are modeled by an
RLC network and the transient analysis should be carried out.
Recently, a fast simulation technique which is similar to the
FDTD method for electromagnetic analysis [1] was proposed
[2]. In the FDTD method, electric and magnetic fields are
alternately calculated. On the other hand, in the method [2],
voltage and current vectors are alternately calculated (we call it
the circuit-based FDTD method). It is shown that the circuit-
based FDTD method is 100 to 1000 faster than SPICE for
the analysis of RLC grid [3]. However, routing of VLSI,
package, and board are generally modeled by a mutually
coupled system represented by the capacitance and induc-
tance matrices. Therefore, the circuit-based FDTD method is
extended to the analysis of a mutually coupled system [3],
[4]. However, the inductance matrix is not always obtained.
Since the RLC extraction requires a huge computation cost,
it is impossible to extract them for the whole area of routing
of VLSI, package, and board. Therefore, the RLC values are
partially extracted with the window techniques. In this case,
the stable inductance matrix is difficult to be extracted with
the window technique. Alternatively, the reluctance matrix is
extracted [5], [6]. Therefore, the circuit-based FDTD method
should be extended to the analysis of a circuit modeled by the
reluctance matrix.

In this paper, we present the circuit-based FDTD method
for the analysis of a mutually coupled system, where the
reluctance matrix is introduced. First, the RLC circuit is
expressed by the RLCG-MNA formulation [3] and the nu-
merical integration is separately applied to the nodal and
mesh equations. Here, the mesh equation rewritten with the
reluctance matrix is solved for the current vector.

In the examples, we confirm the efficiency of the circuit-
based FDTD method, comparing with SPICE simulators.

II. CIRCUIT BASED FDTD METHOD

A. RLCG-MNA Formulation

A mutually coupled system is compactly represented by
the RLCG-MNA formulation [3]. The formulation can be
understood for the example of the two conductor system shown
in Fig. 1. The impedance of the coupled system is represented
by two resistors, two self, and one mutual inductors. Then, the
two nodes connecting resistor and inductor are not considered
in the formulation. In the RLCG-MNA formulation, resistance
matrix, the diagonal entries of which are a resistance value of
conductors, appears in the (2,2) block part of the MNA matrix,
though the part is a zero matrix in the original formulation.

The RLCG-MNA equation of the coupled system is written
by
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In (1), ����, ����, and ���� are vectors of the node voltages,
currents though inductors, and excited current sources, respec-
tively.�, 	, and� are conductance, capacitance, and incident
matrices, respectively. The dimensions of these matrices and
vectors in (1) are assumed as follows,
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It is assumed here that in the equivalent RLC circuit of the
mutually coupled system, each node is connected to the ground
though a capacitor.

B. Circuit-based FDTD method

Yee’s FDTD method [1] for solving the Maxwell’s equations
is based on the midpoint rule in the numerical integration
and alternate updates of electric and magnetic fields. Shutt-
Aine [2] provides a fast circuit simulation method for a large
scale RLC network by replacing the electric and magnetic

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 353 -



L2R2

L1R1

KIgnore

i1

i2

Fig. 1. Model of two conductor coupled system.

fields with the node voltages and branch currents in the circuit
simulation. This method assumes that there exist a capacitor
connected to the ground at every node and an inductor and
resister branch between the two nodes. If the capacitor or
inductor does not exist, a tiny capacitor or inductor, that is,
latency is inserted. Therefore, this method is called Latency
Insertion Method (LIM). Since a circuit does not always have
such a capacitor and an inductor, we must often use latency
which makes the simulation inaccurate. In [4], it is shown
that necessity of inserting latency becomes mild by using the
RLCG-MNA formulation (1).

Applying the midpoint rule to simulating (1), we can
calculate the voltages and currents at a discrete time point
as �
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where ������ � ���� � ����, �� � �����, and � � ���� � ��.
We call the procedure (2) and (3) the circuit-based FDTD
method.

III. METHOD USING RELUCTANCE MATRIX

In the RLCG-MNA equation (1), the conductance matrix
� is always sparse and the capacitance 	 matrix is also
sparse since the values are extracted by the window tech-
nique. Therefore, (2) is efficiently solved by using the sparse
Cholesky decomposition. On the other hand, since it is not
easy to discard the off-diagonal elements of inductance matrix
with preserving the stability, the inductance matrix cannot be
extracted partially. Therefore, solving (3) for the current vector
needs a larger CPU cost than (2). Hence, the reluctance matrix
� is introduced. The reluctance can be partially extracted [5],
[6].

Multiplying � � 

�� from the left side of (3), we can

obtain the update rule for the current vector as�
�
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The equation (4) is solved for the current vector by using
the sparse LU decomposition. Fortunately, we can reduce the
computational cost using the explicit numerical integration.
In this case, solving the system of linear equations is not
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Fig. 2. Bus model.
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Fig. 3. Equivalent circuit of 2 bus model.

necessary. Using the forward Euler method, we can write the
update rule as

������ � �� � ���� ������ � ������ (5)

Since the implicit numerical integration is used in (2), the time-
domain simulation using (2) and (5) does not break down, if
an appropriate time-step size is chosen [4].

IV. SIMULATIONS

To evaluate the circuit-based FDTD method, the bus model
which consists of 128 conductors was analyzed, where these
conductors were placed as shown in Fig. 2. Using FASTCAP
[7], [8] and FASTHENRY [9], we calculated the capacitance
and inductance matrices. Dividing the capacitance matrix into
half, we made a equivalent circuit of the bus model. The case
of the two conductors is shown in Fig. 3.

Terminating every node by a 50 ��	 resister and giving an in-
put current (0.1 [ns] fall/rise time, 0.4 [ns] pulse width, 0.2 [ns]
delay time, 1.0 [ns] period, and 5 [mA] amplitude) at the node

TABLE I

CPU TIME COMPARISON OF 128 CONDUCTORS’ EXAMPLE

method Implicit Explicit
Full 0.64s 0.53s

SPARSE1 0.27s 0.20s
SPARSE2 0.18s 0.16s

HSPICE 12.36s
NGSPICE 242.83s

TABLE II

CPU TIME COMPARISON OF 2000 CONDUCTORS’ EXAMPLE

method Implicit Explicit
Full 20.7s 10.9s

SPARSE1 4.81s 4.21s
SPARSE2 4.06s 3.80s
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Fig. 4. Transient responses at (a)the nearest and (b)the farthest nodes from the input. (c)The enlarged responses of (b).

of the first conductor, we calculated the transient responses by
the circuit-based FDTD method. For comparisons, the result is
compared with HSPICE and Berkeley SPICE (NGSPICE). The
transient responses at the nearest (input) and farthest nodes
are shown in Figs. 4(a) and 4(b), respectively, where (4) is
used for calculating the current vector. The CPU times are
listed in Table 1, where the CPU time of the circuit-based
FDTD method with the dense capacitance and inductance
matrices is represented as ’Full’, and ’implicit’ and ’explicit’
means that (4) and (5) are respectively used for calculating the
currents. From Table 1, we can see that the proposed method
is much faster than HSPICE and NGSPICE. The responses
of Fig. 4(b) during (0, 0.7) [ps] are enlarged and shown
in Fig. 4(c). The response of HSPICE is different from the
others. Although HSPICE is faster than NGSPICE, it sacrifices
the accuracy. Since the waveform obtained by the circuit-
based FDTD method is identical to NGSPICE, this method
is preferable to HSPICE and NGSPICE.

Fig. 5 shows the transient responses at the farthest node
from the input, where the implicit integration of (4) or the
explicit integration of (5) is used for calculating the current
vector. Both responses are overlapped, which means that we
can use the explicit numerical integration thought RLC circuits
are usually stiff.

To evaluate the simulations with the sparse capacitance and
inductance matrices, the capacitance and inductance matrices

were truncated so that they became a banded matrix. We
made the banded inductance and capacitance matrices with
bandwidths 21 and 11. The simulation results are shown in
Figs. 6(a) and 6(b). We refer to the simulation using the
banded matrices with bandwidth 21 as ’SPARSE1’ and with
bandwidth 11 as ’SPARSE2’ in Figs. 6(a) and 6(b), and
the case with the dense matrices as ’Full’. The transient
waveforms of Figs. 6(a) and 6(b) show the responses at the far
ends of the 10th and 20th conductors. Since the input is given
at the first conductor, we can obtain a good approximation
result if the observation node is within a distance corre-
sponding to the bandwidth of the capacitance and inductance
matrices. Therefore, in ’SPARSE2’, we cannot expect a good
approximation at the far end of 20th conductors as Fig. 6(b).
We have to select an appropriate bandwidth in order to obtain
a reasonable result. The CPU times of the simulations with
the sparse matrices are also listed in Table 1.

As another example, the bus which has 2000 conductors
with the same structure as the previous example, were ana-
lyzed. In this example, inductive coupling was only considered
and a capacitor (0.126 [fF]) was connected to the ground at
every node. We shows the CPU times of the simulations in Ta-
ble 2 on the same conditions with ’SPARSE1’, ’SPARSE2’,
and ’Full’ of the previous example. Using the sparse matrices,
the circuit-based FDTD method is certainly accelerated.
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Fig. 5. Transient waveforms calculated by the circuit-based FDTD method,
where the update rule (4) or (5) for current vector is used.

V. CONCLUSIONS

In this paper, the circuit-based FDTD method for analysis
of a mutually coupled system has been presented, where the
reluctance matrix is introduced. In this method, the voltage and
current vectors are alternately updated. Therefore, this method
is a variety of FDTD methods for circuit simulation. In the
examples, the efficiency of the circuit-based FDTD method is
shown, compared with SPICE simulators
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Fig. 6. Transient waveforms when the sparse capacitance and reluctance
matrices are used. The responses at the far end of (a)the 10th and (b)the 20th
conductors.
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