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Abstract—Recently, quite a lot of studies on evolution-
ary prisoner’s dilemma games (PDGs) on networks have
been made. In this paper, we investigate evolutionary
PDGs with cooling-off periods on networks. In our study,
if a player is defected by his opponent player in the PDG,
he quits playing a game against the opponent for a certain
periods called ”cooling-off periods”. We demonstrate that
players become more cooperative by cooling-off periods
because defective players’ chances of participating in the
PDG are restricted remarkably.

1. Introduction

In social systems occupied by selfish individuals, co-
operative behaviors are often seen. In order to explain
those behaviors, a good number of studies have been made.
In particular, a prisoner’s dilemma game (PDG) has been
known as a paradigm for studying the emergence of coop-
erative behaviors.

In the original PDG, two players simultaneously decide
whether to cooperate (C) or to defect (D). They both re-
ceive payoff R (Rewards) upon mutual cooperation and
payoff P (Punishment) upon mutual defection. A defector
exploiting a C player gets payoff T (Temptation to defect),
and the exploited cooperator receives payoff S (Sucker’s
value), such that T > R > P > S and 2R > T + S .
In one-time-only PDG, if the players reasonably work to
maximize own payoff under above conditions, it is best to
defect regardless of the co-player’s decision. As a result,
they get to defect for each other. However, mutual cooper-
ation would be better result for them than mutual defection.
Therefore, the dilemma is caused by the selfishness of the
players. For the emergence of cooperation, the other exten-
sions based on the original PDG need to be explored.

Nowak and May showed that the PDG on a simple spa-
tial structure induces emergence and persistence of cooper-
ation even with the co-existence of spatial chaos [1]. Since
then, several studies have reported various network effects
on the evolution of cooperation in different network models
[2, 3, 4, 5, 6]. In addition, introduction of network coevolu-
tion has been also researched [7, 8, 9, 10]. In those models,
generally, when a player is defected many times in series,
the defected player stochastically deletes the link with the
opponent and connects with a new player.

In this study, we consider the suspension of playing with
the opponent instead of deleting the link. When a player is

defected in the evolutionary PDGs on networks, he quits
playing a game against the opponent for a certain peri-
ods. We call the periods ”cooling-off periods”. We demon-
strate that players become more cooperative by coolong-off
because defective players’ chances of participating in the
PDG are restricted remarkably.

2. Model

2.1. Networks

In evolutionary PDGs on networks, the following net-
works are often used. In this study, we use these networks.

1. Regular network (RGN)
RGN is constructed in the way that all nodes are reg-
ularly linked. The square lattice and the circular grid
network are typical. We use the circular grid network
and links each node with the ten nearest neighbors.

2. Random network (RDN)
RDN is constructed in the way that all nodes are ran-
domly linked. We randomly link each node with r
percent of nodes in total.

3. Small-world network (SWN)
SWN shares the features of both RGN and RDN; av-
erage distance is short among nodes and the cluster-
ing coefficient is high. We use the Watts-Strogatz
model [11]. It is constructed from RGN by reconnect-
ing a fraction w of links.

4. Scale-free network (SFN)
In SFN, the degree distribution p(k), which deter-
mines the probability of finding exactly k neighbors
for a player, shares the feature of a power-law. We
use the Barabási-Albert model [12]. In this model,
starting from m0 fully connected nodes, a new node
with m(m≤m0) links is added to the system step by
step. The new node is preferentially linked to those
nodes that have large degrees already and is linked to
the existing node with a probability depending on the
degree.

2.2. Cooling-off periods

In the network, if a player x is defected by his opponent
player y, x quits playing a game against y for c steps. Dur-
ing the steps, y cannot play with x. Afterward, they restart
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the game. We call it ”cooling-off periods” between x and y.
Here we should note that cooling-off periods are not con-
cerned with player y but the link between x and y. If both
defect, the link between them enters in the cooling-off pe-
riods as well as the either case.

2.3. Payoff

2.3.1. Payoff matrix

We use the following payoff matrix.

A =
[
R S
T P

]
=

[
1 0
b 0

]
. (1)

Although eq.(1) does not strictly satisfy with the condition
of PDG, T > R > P > S , we use the matrix in this paper
because it can be simply described by one parameter b and
is also used in other papers [1, 2, 3, 4, 6, 7, 8, 9].

2.3.2. Calculation of payoff

Each player plays with all linked players (neighbors) ex-
cept for the links in the cooling-off periods. Then he uses
the same strategy for all neighbors. The total payoff Px of
player x can be written as below.

Px =
∑
y∈Ωx

sT
x Asy, (2)

where sx is two component vector of his strategy, taking
the value sx = (1, 0)T for C-player and sx = (0, 1)T for D-
player, and Ωx is the set of neighbors except for the links in
the cooling-off periods against x.

2.4. Strategy update rule

We use Win-Stay-Lose-Shift as the strategy update rule.
Each player compares own payoff with his neighbors’. If
his payoff is the maximum, his strategy doesn’t change.
Otherwise he adopts the strategy of the neighbor with the
highest payoff. If there are multiple choices, he randomly
chooses one player from the neighbors. All players simul-
taneously update each strategies.

Even a player with the links in the cooling-off periods
can change his strategy. The links are also used according
to the rule because they are kept connected in the periods.

2.5. Network update rule

When y defects x, he is in the cooling-off periods. If y
defects x again in the immediate game after c steps, he is
said to defect x consecutively. Then, we update the net-
work as below. Firstly, in the process that player x and y
play, if y defected x for f ( f ≥ 2) times consecutively, x
deletes the link with y. Secondly, y finds player z with the
highest payoff in his neighbors (including x). Finally, in z’s
neighbors, y finds the player with the highest payoff except
for x and connects with him. If a player has no link, he is
isolated and remains so afterword.

2.6. Algorithm

The algorithm in this model is following.

1. Construct a network.

2. Choose each player’s strategy.

3. Regard 4 ∼ 6 as one step and repeat steps.

4. Let each player plays with his neighbors who are not
in the cooling-off periods.

5. Update their strategies simultaneously.

6. Update network structure.

3. Simulation and discussion

We simulate PDGs on four kinds of networks and con-
struct five patterns for each network, except for RGN
(one pattern). These networks consist of 1000 players
and are randomly initialized with exactly 50% coopera-
tors and 50% defectors. We set the following parameters:
r = 1, w = 0.3 and m = m0 = 3 and vary f = 2, 3,
b = 1.0, 1.1, . . . , 1.9 and c = 0, 1, 3. Here, c = 0 means that
we do not consider the cooling-off periods and also run the
model under the same condition for comparison. Addition-
ally, we also run the model without network update rule.
Then, the parameters vary under the same conditions ex-
cept for f . For each set of values and network, we carry
out 125 runs (=(5 network patterns)×(5 initial strategies
patterns)×(5 runs)), except for RGN (25 runs).

As the evaluation indices, we use a degree distribution
p(k)(0≤p(k)≤1) and a cooperation level ρC(0≤ρC≤1). They
show the change of the network structure and the level of
cooperation in the society respectively. We evaluate them
in the state that the change of cooperation level is stable in
the society (static state). When the change is within 1% for
5 steps in series, we finish the system and take the average
value as ρC by averaging the values. When the system does
not reach the static state within 200 steps, we finish it and
take the average value as ρC by averaging the values in last
5 steps.

In Figure 1, we show the initial and final time of the
degree distribution p(k) in RDN and SFN. We chose each
characteristic result from 125 runs in b = 1.9, c = 1, f = 2.
In RDN (Figure 1 (a), (b)), p(k) changes greatly between
initial and final time, and players with high degree (hub
players) emerge. The result in (b) is similar to SFN’s fea-
ture, power-law. In SFN (Figure 1 (c), (d)), p(k) changes
little. Because of page number limitation, we omit the re-
sults in RGN and SWN. In final time, their results are sim-
ilar to SFN. In the case not introducing cooling-off peri-
ods, our results in each network are different. This implies
that these networks approach to the SFN by introducing the
cooling-off periods. Therefore, in SFN, it is thought that
p(k) changes little.
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Figure 1: p(k) in initial and final time for c = 1, f = 2 and
b = 1.9

In Figure 2, we show the average of ρC in 125 runs on
each network (25 runs on RGN). The results with f = 2, 3
and without network update rule (no update) are shown for
each network and c’s value. ρc also increases rapidly by
introducing cooling-off periods. Therefore, in these net-
works, it is shown that the coevolution model is efficient.
However, in SFN, it is not clear that cooling-off periods are
effective. In RGN (Figure 2 (b), (c)), when c = 1, the case
of f = 2 is better than the case of f = 3. However, when
c = 3, ρC reaches 1 for any b and f = 2, 3. If either f
or c is fixed, the cooperation level is improved when the
other is larger. In RDN (Figure 2 (e), (f)), when b is larger,
ρC reaches 1 except for c = 1 and f = 2. In SWN (Fig-
ure 2 (h), (i)), ρC attains entirely the best result in all the
networks. In SFN (Figure 2 (k), (l)), although the case of
c = 1, 2 are better than c = 0, ρC does not reach 1 in any
b. Thus, in these results, it is shown that players become
more cooperative by cooling-off periods. As the reason, it
is thought that defectors try to become cooperative because
their payoffs are low in the cooling-off periods.

4. Conclusions

By introducing cooling-off periods in evolutionary pris-
oner’s dilemma game on four kinds of the networks, the
degree distribution p(k) changed greatly and the coopera-
tion level ρC increased except for SFN. Also, when c is

larger, ρC increases. Thus, our approach has proved very
effective.

As further research in the future, we do simulations with
c, r and w in a wider range. Also, to evaluate network
structure, we investigate the average degree and the aver-
age distance among nodes. Additionally, we will propose
the new coevolution model introducing the cooling-off pe-
riods. Now, we have investigated the model that the link
between player x and y stochastically enters in the cooling-
off periods when x is defected by y.
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(i) SWNs, c = 3
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Figure 2: Average of ρC as the function of b for different values of c and f on different kind of networks
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