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Abstract—In this study, we consider a discrete gait gen-
eration method for the compass-type biped robot mod-
eled by discrete mechanics. First, we derive the discrete
compass-type biped robot model. Next, we define an op-
timal control problem on discrete gait generation and ex-
plain a sequential quadratic programming approach to the
problem. A simulation is then illustrated to confirm the ef-
fectiveness of our method.

1. Introduction

Recently, a lot of work on humanoid robots have been
done. Especially, the compass-type biped robot is one of
simplest models of humanoid robots and has been mainly
researched so far. In most studies on humanoid robots,
the continuous-time mathematical model is dealt with, and
Poinćare section approach is usually used to generate sta-
ble walking or gait [4, 5]. However, a humanoid robot is
known to be one of most difficult mechanical systems to
control, and many problems are still left unsolved.

On the other hand,discrete mechanicshas been focused
on as a new discretizing tool for mechanical systems over
the last decade [1, 2, 3]. By using discrete mechanics, we
can directly obtain a discrete-time model of a mechanical
system, and the discrete-time model has various advantages
in terms of numerical errors and physical characteristics.
We have researched discrete mechanics from the standpoint
of control theory and derived some results [6, 7, 8]. In
these studies, we mainly treat the cart-pendulum system as
a physical example. However, it is expected that discrete
mechanics can be applied to more complicated mechanical
system and discrete mechanics approach may add a fresh
dimension to control problems for humanoid robots.

In this paper we apply discrete mechanics to the
compass-type biped robot and consider a gait generation
problem for the discrete compass-type biped robot formu-
lated by discrete mechanics. This paper is organized as fol-
lows. First, some basic concepts on discrete mechanics are
summed up in Section 2. In Section 3, we next derive the
discrete compass-type biped robot based on discrete me-
chanics and explain two modes of the system. Then, a
gait generation problem of the discrete compass-type biped
robot is formulated , and a solving method of it from the
viewpoint of the sequential quadratic programming is de-

veloped in Section 4. In Section 5, we then show a numer-
ical simulation to confirm the effectiveness of our method.

2. Discrete Mechanics

This section sums up basic concepts of discrete mechan-
ics [1, 2, 3]. LetQ be a configuration manifold andq ∈ R
be a generalized coordinate ofQ. We also refer toTqQ
as the tangent space ofQ at a pointq ∈ Q and q̇ ∈ TqQ
denotes a generalized velocity. Moreover, we consider a
time-invariant Lagrangian asL(q, q̇) : T Q→ R. We first
explain about the discretization method. The time variable
t ∈ R is discretized ast = kh (k = 0,1,2, · · · ) by using a
sampling intervalh > 0. We denoteqk as a point ofQ at
the time stepk, that is, a curve onQ in the continuous set-
ting is represented as a sequence of pointsqd := {qk}Nk=1 in
the discrete setting. The transformation method of discrete
mechanics is carried out by the replacement:

q ≈ (1− α)qk + αqk+1, q̇ ≈ qk+1 − qk

h
, (1)

whereq is expressed as a internally dividing point ofqk and
qk+1 with a ratioα (0 < α < 1) We then definea discrete
Lagrangian:

Ld
α(qk,qk+1) := hL

(
(1− α)qk + αqk+1,

qk+1 − qk

h

)
, (2)

anda discrete action sum:

Sd
α(q0,q1, · · · , qN) =

N−1∑
k=0

Ld
α(qk,qk+1). (3)

We next summarize the discrete equations of motion. Con-
sider a variation of points onQ as δqk ∈ Tqk Q (k =
0,1, · · · ,N) with the fixed conditionδq0 = δqN = 0. In
analogy with the continuous setting, we define a variation
of the discrete action sum (3) as

δSd
α(q0,q1, · · · , qN) =

N−1∑
k=0

δLd
α(qk,qk+1). (4)

The discrete Hamilton’s principle states thatonly a motion
which makes the discrete action sum (3) stationary is real-
ized. Calculating (4), we have

δSd
α =

N−1∑
k=1

{D1Ld
α(qk,qk+1)δqk + D2Ld

α(qk−1,qk)}δqk, (5)
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whereD1 andD2 denotes the partial differential operators
with respect to the first and second arguments, respectively.
Consequently, from the discrete Hamilton’s principle and
(5), we obtainthe discrete Euler-Lagrange equations:

D1Ld
α(qk,qk+1) + D2Ld

α(qk−1,qk) = 0,

k = 1, · · · ,N − 1.
(6)

It turns out that (6) is represented as difference equations
which contains three pointsqk−1, qk, qk+1, and we need
q0, q1 as initial conditions when we simulate (6).

3. Discrete-time Compass-Type Biped Robot

This section derives a discrete-time model of a compass-
type biped robot by using discrete mechanics. In this paper
we consider a compass-type biped robot as shown in Fig.
1. Let θ andϕ be the angles of Leg 1 and 2, respectively.
We also use the notations:m: the mass of the legs,M: the
mass of the waist,I : the inertia moment of the legs,a: the
length between the waist and the center of gravity,b: the
length between the center of gravity and the toe of the leg,
l (= a+ b): the length between the waist and the toe of the
leg. The Lagrangian of this system is given by

Lc(θ, ϕ, θ̇, ϕ̇) =
1
2

(I +ma2 +ml2 + Ml2) θ̇2

+
1
2

(I +mb2)ϕ̇2 −mblcos (θ − ϕ) θ̇ ϕ̇

− (ma+mg+ Ml)gcosϕ +mgbcosϕ.

(7)

LEG1

LEG2

Fig. 1 : Compass-Type Biped Robot

Based on the problem setting above, we now derivethe
discrete compass-type biped robot (DCBR)via discrete me-
chanics. In general, a model of a compass-type biped robot
consists of two modes:the swing phaseand the impact
phase. As shown in Fig. 2, it is noted that the swing
phase and the impact phase occur alternately and the swing
leg and the supporting leg switch positions with each other
with respect to each collision. We use the notations:h: a
sampling time,α: a division ratio in discrete mechanics,
k = 1,2, · · · ,N: a time step,i = 1,2, · · · , L: an order of
swing phases,θ(i)k , ϕ

(i)
k : the angles of Leg 1 and 2 at the

time stepk in the i-th swing phase, respectively,u(i)
k : the

control input at the time stepk in the i-th swing phase as a
discrete torque for the swing leg.

Swing Phase

Swing Phase Impact Phase

Swing Phase Impact Phase

Impact Phase

Swing Phase

Impact Phase

Impact Phase

Fig. 2 : Gait Generation for DCBR

First, we derive the swing phase model of the DCBR for
the case where Leg 1 is the swing leg and Leg 2 is the sup-
porting leg as shown in Fig. 1. For the case where Leg 1
is the supporting leg and Leg 2 is the swing leg, we can
easily obtain the model by changingθ(i)k for ϕ(i)

k . Calculate
the discrete LagrangianLd

α from (7) as (2) and substitute it
into the discrete Euler-Lagrange equations (6). Moreover,
adding the control input to the left-hand side of the dis-
crete Euler-Lagrange equations, we obtain the swing phase
model as

f1(θ(i)k−1, θ
(i)
k , θ

(i)
k+1, ϕ

(i)
k−1, ϕ

(i)
k , ϕ

(i)
k+1,u

(i)
k ) = 0, (8)

f2(θ(i)k−1, θ
(i)
k , θ

(i)
k+1, ϕ

(i)
k−1, ϕ

(i)
k , ϕ

(i)
k+1,u

(i)
k ) = 0, (9)

where functionsf1 and f2 are defined as (10) and (11), re-
spectively.

Next, we consider the impact phase model of the
DCBR. In this paper we assume that the swing leg has a
completely-elastic collision with the ground surface. Cal-
culating the condition that discrete momentums before and
after a collision are equivalent, that is,

D2Ld
α(θ

(i)
N−1, θ

(i)
N , ϕ

(i)
N−1, ϕ

(i)
N )=D1Ld

α(θ
(i+1)
1 , θ(i+1)

2 , ϕ(i+1)
1 , ϕ(i+1)

2 ),

D4Ld
α(θ

(i)
N−1, θ

(i)
N , ϕ

(i)
N−1, ϕ

(i)
N )=D3Ld

α(θ
(i+1)
1 , θ(i+1)

2 , ϕ(i+1)
1 , ϕ(i+1)

2 ),

- 435 -



f1 = − (ma2 + Ml2 +ml2 + I )(θ(i)k+1 − θ
(i)
k ) +mbl(1− α) sin ((1− α)(θ(i)k − ϕ

(i)
k ) + α(θ(i)k+1 − ϕ

(i)
k+1))(θ

(i)
k+1 − θ

(i)
k )(ϕ(i)

k+1 − ϕ
(i)
k )

+mblcos ((1− α)(θ(i)k − ϕ
(i)
k ) + α(θ(i)k+1 − ϕ

(i)
k+1))(ϕ

(i)
k+1 − ϕ

(i)
k ) + (ma+ml+ Ml)gh2(1− α) sin ((1− α)θ(i)k + αθ

(i)
k+1)

+ (ma2 + Ml2 +ml2 + I )(θ(i)k − θ
(i)
k−1) +mblα sin ((1− α)(θ(i)k−1 − ϕ

(i)
k−1) + α(θk − ϕk))(θ

(i)
k − θ

(i)
k−1)(ϕ

(i)
k − ϕ

(i)
k−1)

−mblcos ((1− α)(θ(i)k−1 − ϕ
(i)
k−1) + α(θ

(i)
k − ϕ

(i)
k ))(ϕ(i)

k − ϕ
(i)
k−1) + (ma+ml+ Ml)gh2α sin ((1− α)θ(i)k−1 + αθ

(i)
k ) + hu(i)

k

(10)

f2 = − (mb2 + I )(ϕ(i)
k+1 − ϕ

(i)
k ) −mbl(1− α) sin ((1− α)(θ(i)k − ϕ

(i)
k ) + α(θ(i)k+1 − ϕ

(i)
k+1))(θ

(i)
k+1 − θ

(i)
k )(ϕ(i)

k+1 − ϕ
(i)
k )

+mblcos ((1− α)(θ(i)k − ϕ
(i)
k ) + α(θ(i)k+1 − ϕ

(i)
k+1))(ϕ

(i)
k+1 − ϕ

(i)
k ) +mglh2(1− α) sin ((1− α)θ(i)k + αθ

(i)
k+1)

+ (mb2 + I )(ϕ(i)
k − ϕ

(i)
k−1) −mblα sin ((1− α)(θ(i)k−1 − ϕ

(i)
k−1) + α(θ

(i)
k − ϕ

(i)
k ))(θ(i)k − θ

(i)
k−1)(ϕ

(i)
k − ϕ

(i)
k−1)

−mblcos ((1− α)(θ(i)k−1 − ϕ
(i)
k−1) + α(θ

(i)
k − ϕ

(i)
k ))(ϕ(i)

k − ϕ
(i)
k−1) +mglh2α sin ((1− α)θ(i)k−1 + αθ

(i)
k ) − hu(i)

k

(11)

h1 = (ma2 +ml2 + Ml2 + I )(θ(i)N − θ
(i)
N−1) +mblα sin ((1− α)(θ(i)N−1 − ϕ

(i)
N−1) + α(θ

(i)
N − ϕ

(i)
N ))(θ(i)N − θ

(i)
N−1)(ϕ

(i)
N − ϕ

(i)
N−1)

−mblcos ((1− α)(θ(i)N−1 − ϕ
(i)
N−1) + α(θ

(i)
N − ϕ

(i)
N ))(ϕ(i)

N − ϕ
(i)
N−1) + (ma+ml+ Ml)gh2α sin ((1− α)θ(i)N−1 + αθ

(i)
N )

− (ma2 +ml2 + Ml2 + I )(θ(i+1)
2 − θ(i+1)

1 ) +mbl(1− α) sin ((1− α)(θ(i+1)
1 − ϕ(i+1)

1 ) + α(θ(i+1)
2 − ϕ(i+1)

2 ))(θ(i+1)
2 − θ(i+1)

1 )(ϕ(i+1)
2 − ϕ(i+1)

1 )

+mblcos ((1− α)(θ(i+1)
1 − ϕ(i+1)

1 ) + α(θ(i+1)
2 − θ(i+1)

2 ))(ϕ(i+1)
2 − ϕ(i+1)

1 ) + (ma+ml+ Ml)gh2(1− α) sin ((1− α)θ(i+1)
1 + αθ(i+1)

2 )

(14)

h2 = (mb2 + I )(θ(i)N − θ
(i)
N−1) +mblα sin ((1− α)(θ(i)N−1 − ϕ

(i)
N−1) + α(θ

(i)
N − ϕ

(i)
N ))(θ(i)N − θ

(i)
N−1)(ϕ

(i)
N − ϕ

(i)
N−1)

−mblcos ((1− α)(θ(i)N−1 − ϕ
(i)
N−1) + α(θ

(i)
N − ϕ

(i)
N ))(ϕ(i)

N − ϕ
(i)
N−1) +mglh2α sin ((1− α)θ(i)N−1 + αθ

(i)
N )

− (mb2 + I )(θ(i+1)
2 − θ(i+1)

1 ) −mbl(1− α) sin ((1− α)(θ(i+1)
1 − ϕ(i+1)

1 ) + α(θ(i+1)
2 − ϕ(i+1)

2 ))(θ(i+1)
2 − θ(i+1)

1 )(ϕ(i+1)
2 − ϕ(i+1)

1 )

+mblcos ((1− α)(θ(i+1)
1 − ϕ(i+1)

1 ) + α(θ(i+1)
2 − θ(i+1)

2 ))(ϕ(i+1)
2 − ϕ(i+1)

1 ) +mglh2(1− α) sin ((1− α)θ(i+1)
1 + αθ(i+1)

2 )

(15)

we have

h1(θ(i)N−1, θ
(i)
N , θ

(i+1)
1 , θ(i+1)

2 , ϕ(i)
N−1, ϕ

(i)
N , ϕ

(i+1)
1 , ϕ(i+1)

2 ) = 0, (12)

h2(θ(i)N−1, θ
(i)
N , θ

(i+1)
1 , θ(i+1)

2 , ϕ(i)
N−1, ϕ

(i)
N , ϕ

(i+1)
1 , ϕ(i+1)

2 ) = 0, (13)

where functionsh1 andh2 are defined as (14) and (15), re-
spectively. Moreover, in the impact phase, the swing leg
and the supporting leg replace each other, and this can be
realized the next equation:

θ(i+1)
1 = −θ(i)N , ϕ

(i+1)
1 = −ϕ(i)

N . (16)

Therefore, the impact phase model consists of (8)–(16).

4. Discrete-time Gait Generation for DCBR

In this section we consider a gait generation problem for
the DCBR derived in the previous section and we propose
the new concept ’discrete gait.’ We here deal with the fol-
lowing problem.

Problem 1: For the discrete compass-type biped robot (8)–
(16), find a control input that generates a stable discrete
gait.

The purpose of this section is to obtain a control input
solving Problem 1. We now formulate Problem 1 as an
optimal control problem whose objective function is a sum
of the square of a control input. For the DCBR in thei-th
swing phase, an optimal control problem can be formulated
as follows:

min J =
N−1∑
k=1

{u(i)
k }

2 (17)

s.t. (10), (11)

−|(1− α)θ(i)k + αθ
(i)
k+1|+|(1− α)ϕ

(i)
k + αθ

(i)
k+1|<0 (18)

θ(i)1 = −θ
(i)
N , ϕ

(i)
1 = −ϕ

(i)
N . (19)

In the problem above, (18) represents a constraint on the
vertical lengths of Leg 1 and 2, and (19) is a boundary con-
dition in order to generate a stable discrete gait. In the im-
pact phase between thei-th and (i + 1)-th swing phases, we
can calculate initial states of the (i + 1)-th swing phases:
θ(i+1)

1 , θ(i+1)
2 , ϕ(i+1)

1 , ϕ(i+1)
2 from (12)–(16).

The optimal control problem formulated above can be
considered as a finite dimensional constrained nonlinear
optimization problem with respect to the (3N−1) variables
θ(i)1 , · · · , θ

(i)
N , ϕ

(i)
1 , · · · , ϕ

(i)
N , u

i
1, · · · ,ui

N−1. Therefore, we can
solve it by using the sequential quadratic programming ap-
proach and so on [3, 9].

5. Numerical Simulation

In this section we perform a numerical simulation on gait
generation for the DCBR based on the method proposed
in the previous section, and check the availability of our
method.

First, we set parameters as follows; parameters on gait
generation:N = 10, L = 3, parameters on the DCBR:
m = 2.0 [kg], M = 10.0 [kg], I = 1.0 [kgm2], a =
0.5 [m], b = 0.5 [m], l = 1.0 [m], α = 1/2, initial states
of the DCBR:θ11 = π/12, ϕ1

1 = π/12. In order to solve the
optimal control problem (17)–(19), we use the sequential
quadratic programming method [9].

Fig. 3–5 show the simulation results. In Fig 3, time
series plots of the leg 1 and 2 (θ andϕ) are illustrated. Fig.
4 shows the phase space ofθ - ϕ. In Fig. 5, a snapshot
of a discrete gait is depicted. From these results, it can be
confirmed that our approach can generate a stable gait for
the DCBR.
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Fig. 3 : Simulation Result - Time Series Plots ofθ andϕ
(Red :θ, Blue : ϕ)
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Fig. 4 : Simulation Result - Phase Space ofθ - ϕ
(Red : 1st Step, Green : 2nd Step, Blue : 3rd Step)
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Fig. 5 : Simulation Result - Snapshot of Gait
(Red : 1st Step, Green : 2nd Step, Blue : 3rd Step)

6. Conclusion

In this paper we have considered a discrete gait gener-
ation problem for the discrete compass-type biped robot
(DCBR) and developed a solving method for the prob-
lem from the viewpoint of the reduction to a finite dimen-
sional optimization problem and the sequential quadratic
programming method. Simulation results have indicated
the effectiveness of our approach.

Our future work are as follows: discrete gait generation
of the DCBR in various environments such as slopes and
stairs, a transformation method of discrete-time inputs into
continuous-time inputs and control of the normal compass-
type biped robot, experimental validation for the normal
compass-type biped robot.
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