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Abstract—The digital spike map is a simple digital
dynamical system on a set of finite number of lattice
points. Depending on parameters and initial condi-
tion, the map can exhibit various periodic/transient
spike-trains. In order to analyze the map, this pa-
per presents two simple feature quantities. The first
one can characterize plentifulness of the periodic spike-
trains. The second one can characterize deviation of
the transient phenomena. Using the two quantities,
we demonstrate several fundamental results.

1. Introduction

The digital spike map (DSM) is a simple dynamical
system on a set of a finite number of lattice points.
Depending on parameters and initial condition, the
DSM can generate a variety of spike-trains ( [1] and
Refs. therein ). The DSM can be ragarded as a di-
gital version of the analog 1D maps [2]. The DSM
can have a variety of periodic spike-trains (PSTs) as
steady states. The PSTs can co-exist and the DSM
exhibits either PST depending on the initial value.
As motivations for studying the DSM include the

following two points. First, the DSM can be a simple
and typical example digital dynamical systems such
as cellular automata, dynamic binary neural networks,
and digital spiking neurons [3]-[6]. Such systems have
been studied not only for analysis of its nonlinear dyn-
amics but also for variety of applications such as image
processing and information compression [7] [8]. Se-
cond, the DSM can be a basic system for spike-based
engineering applications such as spike-based commu-
nication and information processing [9]-[11].
This paper presents two simple feature quantities for

analysis of the DSMs and investigate several examples
of the DSMs. The first quantity is the rate co-existing
PSTs. The DSM can have plural PSTs and exhibits
either of them depending on the initial condition. It
can characterize plentifulness of the PSTs. The se-
cond quantity is the concentricity of transition to the
PSTs. This quantity can characterize deviation of the
transient phenomena to the PSTs and is based on the
concentricity of state transition [12]. Using the two
quantities, we then demonstrate fundamental results
for DSMs based on the bifurcating neuron (BN). The
BN is a simple analog dynamical system that can ge-
nerate various chaotic/periodic spike-trains [13]-[15].

2. Digital Spike Map

Fig. 1 shows the spike-position map on a set of
lattice points

τn+1 = F (τn), F : L → L
τn ∈ L ≡ {l1, l2, · · ·}, li ≡ (i− 1)/N, i = 1, 2, · · ·

(1)
where we assume that the system has normalized pe-
riod 1 and devide L into subintervals of each period:

L =
⋃∞

n=0, L1 ≡ {l1, l2, · · · lN}
Lk ≡ L1 + k − 1

We also assume that the map satisfies periodic condi-
tion and the law of cause and effect.

F (τ + 1) = F (τ) + 1, F (τ) > τ (2)

Let τn denote the n-th spike-position on L As an ini-
tial spike train τ1 is given as shown in Fig. 1, the
map generate a spike-train characterized by the spike-
positions

Y (τ) =

{
1 for τ = τn
0 for τ �= τn

(3)

Note that the spike-positions are restricted on the lat-
tice points. This map can generate a variety of spike-
train. For simplicity, we assume that the initial spike-
position is given in the first subinterval and that initial

Figure 1: Digital spike-position map and spike-train
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condition generates a spike-train such that one spike
exists in each subinterval

τ1 ∈ L1, F (Lk) ∈ Lk+1, k = 1, 2, · · ·

Introducing the spike phase, θn = τn mod 1, we define
the digital spike-phase map from L1 to itself

θn+1 = f(θn) ≡ F (τn) mod 1, f : L1 → L1 (4)

Hereafter, we refer to this map as the digital spike map
(DSM). The iteration of Eq. (4) generates a sequence
of the phases {θn} and the sequence defines a sequence
of spike-positions: a spike-train.

τn = θn + n− 1 for θ1 = τ1 ∈ L1

Since the number of lattice points is finite, the steady
state must be periodic. Note that the initial spike-
position (spike-phase) in given in L1 and one initial
spike-position gives one spike-train.
Definition 1 (see Fig. 2): A point p ∈ L1 is said

to be a periodic point (PEP) with period k if p =
fk(p) and f(p) to fk(p) are all different where fk is
the k-fold composition of f . The PEP with period
1 is referred to as a fixed point. A sequence of the
PEPs {p, f(p), · · · , fk−1(p)} is said to be a periodic
orbit (PEO) with period k. A PEP corresponds to an
initial spike-position in L1 that gives one PST. Hence
one PEP with period k corresponds to one PST with
period k and one PEO with period k corresponds to k
PSTs with period k.

3. Feature Quantities

Since the domain L1 consists of N lattice points
and each lattice point has one image, the DSM has
NN variations. Depending on parameters and initial
condition, the DSN can exhibit extremely complicated
dynamics and it is very hard to give general theory for
the dynamics. This paper tries to consider dynamics
of typical examples of DSMs. In order to classify and
consider the dynamics, we introduce two simple fea-
ture quantities.
Let Np be the number of PEPs on N lattice points.

The first feature quantity is the rate of PEPs (PSTs):

α =
#PEP

N
=

Np

N
, 1/N ≤ α ≤ 1 (5)

This quantity characterize plentifulness of steady sta-
tes (PSTs).
In order to define the second feature quantity, we

define the initial point histogram (IPH).
Definition 2: Let a DSM has Np pieces of PEPs.

Let pi be the i-th PEP, i = 1 ∼ Np. We classify
PSTs for its initial spike-position τ1 ∈ [0, 1). If a PST
started from τ1 = pi ∈ L1 then the PST is referred to

Figure 2: Disital sipke map and initial points histo-
gram.

as the i-th PST. The transient states for the i-th PST
is characterized by EPP(s) falling into the i-th PST.
The IPH is frequency of initial points falling into the
each PST:

Mi = #initial points falling into the i-th PST (6)

The second feature quantity is the concentricity of
transition to the PSTs:

β =

NP∑
i=1

(
Mi

N

)2

, 1/N ≤ β ≤ 1 (7)

In Fig. 2, the IPH of N = 16 is constructed for 4 pieces
of PEPs. The 1st to 3rd PEPs (i = 1 ∼ 3) construct
a PEO with period 3 and the 4th PEP (i = 4) is
the fixed point. Since M1 = 7, M2 = 4,M3 = 4,and
M4 = 1, we obtain β = 82/256. The IPH characterizes
the basin of attraction to the PSTs and The quantity
β characterizes the variation of the basin.

Using the two feature quantities α and β, we con-
struct steady versus transient plot (ST-plot) as shown
in Fig. 3. In the figure, two examples of the DSM and
IPH for N = 16 and Np = 4 are shown. In Fig. 3 (a),
the DSM has three PEPs with period 3 and one fixed
point. The IPH is uniform and we obtain α = 1/4 and
β = 1/4. In Fig. 3 (b), the DSM has four fixed points
and all the EPPs fall into the third fixed point (i = 3).
The IPH is delta-function-like and we obtain α = 1/4
and β = 172/256.

For the ST-plot, we introdue two characteristic cur-
ves. If the IPH is uniform the feature quantities are
plotted on

The uniform curve: αβ =
1

N
(8)

If all the initial poins (not PEPs) fall into one PEP,
then the feature quantities are plotted on

The concentrate curve: β = (1− α)2 +
2− α

N
(9)
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Figure 3: (a) ST plot. (b) DSM/IPH on the uniform
curve. (c) DSM/IPH on the concentrate curve. (N =
16, Np = 4).

The endpoints of the two curves are (1/N, 1) where the
DSM has only one fixed point and (1, 1/N) where the
all the lattice points are PEPs. The feature quantities
must not be plotted out of the region surrounded by
the uniform curve and concentrate curve,

4. Numerical experiments

Here we analyze examples of DSM based on the ana-
log spike map (ASM):

θn+1 = ga(θn) =

⎧⎨
⎩
aθn for 0 ≤ θn < d1
−a2(θn − 1

2 ) +
1
2 for d1 ≤ θn < d2

a(θn − 1) + 1 for d2 ≤ θn < 1

where 0 < d1 < 1/2, d2 ≡ 1 − d1, and a2 = (2ad1 −
1)/(1 − 2d1). This ASM is deribed from the bifurca-
ting neuron (BN). Discretizing the ASM, we obtain
the DSM:

θn+1 =
1

N
INT(Nga(θn) + 0.5) ≡ gd(θn) (10)

where θn ∈ L1 and INT(X) means the integer part of
X. For simplicity, this paper studies the case

d1 = 1/3, (a2 = 2a− 3), 3/2 < a < 3, N = 32 (11)

In this case, the ASM is expanding and exhibits chao-
tic spike-trains.

Case 1: α is very small and β is very large. Fig.
4(a) shows a typical example of DSM for a = 2.35.
This DSM has two fixed points l1 and l16. All the
other points are EPPs. The fixed point corresponds
to a PST with period 1. This DSM has #PST = 2,
α = 0.07. All the EPPs fall into one fixed point l16
and The concentricity of transition to the PEPs is very

large: M1 = 1, M2 = 31 and β = 12+312

322 � 0.94, On
the ST-plot of Fig. 7 (α, β) closed to the endpoints
(1/N.1).

Case 2: α is very large and β is very small. Fig.
4(b) shows a typical example of DSM for a = 3.0.
All the points are PEPs. This DSM has #PST =
32, α = 1.0. This DSM has 6 PEOs. two fixed
points, PEO with period 2 (2PSTs), PEO with period
4 (4PSTs), PEO with period 8 (8PSTs), PEO with
period 16 (16PSTs). The DSM has no EPP. (Fig. 5)
M1 = M2 = · · · = M32 = 1 and β = 1. As shown in
Fig. 7, (α, β) is plotted at the end point (1, 1/N) of
two characteristic curves on the ST-plot.

Case 3: α and β are small. Fig. 6(a) shows a
typical example of DSM for a = 2.24. This DSM has 2
fixed points and 4 PEPs with period 2. The DSM has
6 PEPs and α = 0.19. As shown in Fig. 7, (α, β) is
plotted between the uniform and concentrate curves.

Case 4: α is large and β is small. Fig. 6(b) shows
a typical example of DSM for a = 2.38. This DSM has
2 fixed points and 10 PEPs with period 5. The DSM
has 14 PEPs and α = 0.19. As shown in Fig. 7, (α, β)
plotted almost on the uniform curve.

Figure 4: (a)DSM and IPH for a = 2.35 and N = 32.
α = 0.07, β = 0.94. (b)DSM and IPH for a = 3.0 and
N = 32. α = 1.0, β = 1/32.
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Figure 5: DSM for a = 3.0 and N = 32. (a) fixed
points and PEO with period 2. (b) PEO with period
4. (c) PEO with period 8. (d) PEO with period 16.

5. Conclusions

In order to analyze the DSM, two feature quantities,
α and β, are presented in this paper. The ST-plot is
useful for classification and investigation of the dyna-
mics of DSMs. Using typical examples based on the
BN, basic results are demonstrated. Future problems
include analysis of bifurcation phenomena of the DSMs
and classification of the PSTs on the ST-plot.
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[4] M. Schüle and R. Stoop, A full computation-relevant topo-
logical dynamics classification of elementary cellular auto-
mata, Chaos 22, 043143 (2012)

[5] R. Kouzuki and T. Saito, Learning of simple dynamic bi-
nary neural networks, IEICE Trans. Fundamentals, E96-A,
8, pp.1775-1782, 2013.

[6] H. Torikai, A. Funew, and T. Saito, Digital spiking neuron
and its learning for approximation of various spike-trains,
Neural Networks, 21, pp. 140-149, 2008.

[7] W. Wada, J. Kuroiwa, and S. Nara, Completely reprodu-
cible description of digital sound data with cellular auto-
mata, Physics Letters A 306, pp. 110-115, 2002.

[8] P. L. Rosin, Training Cellular Automata for Image Pro-
cessing. IEEE Trans. Image Process., 15, 7, pp. 2076-2087,
2006.

Figure 6: (a)DSM and IPH for a = 2.24 and N = 32.
α = 0.19, β = 0.31. (b)DSM and IPH for a = 2.38
and N = 32. α = 0.44, β = 0.08

Figure 7: ST-plot for N = 32

[9] S. R. Campbell, D. Wang, and C. Jayaprakash, Synchrony
and desynchrony in integrate-and-fire oscillators, Neural
computation, 11, pp. 1595-1619, 1999.

[10] E. M. Izhikevich, Simple model of spiking neurons, IEEE
Trans. Neural Networks, 14, 6, pp. 1569-1572, 2003.

[11] T. Iguchi, A. Hirata, and H. Torikai, Theoretical and heu-
ristic synthesis of digital spiking neurons for spike-pattern-
division multiplexing, IEICE Trans. Fundamentals, E93-A,
8, pp. 1486-1496, 2010.

[12] S. Amari, A Method of Statistical Neurodynamics, Kyber-
netik 14, pp. 201-215, 1974.

[13] R. Perez, and L. Glass, Bistability, period doubling bifur-
cations and chaos in a periodically forced oscillator, Phys.
Lett., 90A, 9, pp. 441-443, 1982.

[14] H. Torikai, T. Saito and W. Schwarz, Synchronization via
multiplex pulse-train, IEEE Trans. Circuits Syst. I, 46, 9,
pp. 1072-1085, 1999.

[15] Y. Kon’no, T. Saito, and H. Torikai, Rich dynamics of
pulse-coupled spiking neurons with a triangular base signal,
Neural Networks, 18, pp. 523-531, 2005.

- 589 -


	Navigation Page
	Session at a glance

