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Abstract—Physical reservoir computing, which is the
physical implementation of reservoir computing models,
has attracted attention of researchers. Although it has a va-
riety of applications, as a physical entity, it is prone to phys-
ical failures. Therefore, it is necessary to design a reservoir
which is functionally robust to failures. More specifically,
it is desired that a reservoir maintains the dynamics even
after failures. For this purpose, in this paper, we investigate
metrics to evaluate the functional robustness of a reservoir.
By comparing distance metrics, we found that D-spike and
D-interval were suitable for such evaluation.

1. Introduction

The reservoir computing is a type of computational mod-
els based on neural networks [1]. It consists of three lay-
ers: an input layer, an intermediate layer called a reservoir,
and an output layer. The input is projected to the dynam-
ics of the internal state of a high-dimensional and nonlin-
ear reservoir, which is then read out and transformed to the
desired output. Unlike general machine learning methods
using neural networks, the structure and weights of con-
nections of a reservoir can be fully random. Furthermore,
only weights of connections from the reservoir to the output
layer are adjusted during training. Due to its simplicity and
the universal approximation property, research on physical
reservoir computing, in which reservoirs are implemented
in physical systems such as semiconductor lasers and soft
materials, has been actively conducted [1].

Previous studies have verified the performance of phys-
ical reservoir computing, but they assumed the stability of
the reservoir. However, as a physical entity, physical fail-
ures are very likely to occur and the structure of the reser-
voir changes. As a result, the dynamics of the reservoir
changes and thus readout fails. Thus performance degra-
dation is not avoidable. Although training during operation
sometimes is possible, it is not guaranteed that the perfor-
mance is fully recovered.

To tackle the problem, in [2], they investigated the reser-
voir structure which was robust to physical failures. Since
their focus was on the robustness to maintain the perfor-
mance not the structural properties, it was called the func-
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tional robustness. They used a liquid state machine (LSM),
which is a type of reservoir computing model explaining in-
formation processing in the neocortex of the human brain,
and evaluated the relationship between the structure of a
reservoir, called a liquid, and the degree of degradation in
performance of a delayed readout task when facing to loss
of neurons and disconnection of synaptic connections. The
results showed that the high modularity, irregularity, and
high clustering coefficient contributed to the functional ro-
bustness. However, the task performance depends not only
on the reservoir structure but a readout algorithm. There-
fore, it is necessary to train and test a reservoir to design a
physically robust reservoir.

The performance of an LSM depends on two properties
called the separation property and the approximation prop-
erty. The former is related to a liquid, meaning the ca-
pability of generating diverse and input-dependent dynam-
ics. The latter is related to readout, that is, the capability
of mapping the dynamics of a liquid to a desired input-
dependent output. It implies that the functional robustness
can be assessed based purely on the structure of a liquid
without using a specific task.

Therefore, in this paper, we investigated metrics to eval-
uate the functional robustness of a liquid from a viewpoint
of the dynamics of the liquid and identified those well ex-
pressing the performance degradation caused by physical
failures. The liquid dynamics is in the form of a time series
of spikes that neurons emit for given inputs. Therefore, we
assumed that the magnitude of the change in spike trains
was correlated with the magnitude of the decrease in the
performance of an LSM. We compared the change in dis-
tances of four distance metrics and additional one metric
from a viewpoint of correlation with the change in the task
performance, while disconnecting synaptic connections at
random, using six network models. We used the NARMA
(nonlinear autoregressive moving average) [3] task, that is,
a benchmark task of reservoir computing, as the first step
of our research. In the following we call a neuron and a
synaptic connection as a node and a link, respectively.

The remainder of the paper is organized as follows. First
in section 2, we introduce metrics we used in the evalua-
tion. Next section 3 summarizes network models to gener-
ate liquids with a variety of structural properties. Then in
section 4, the setting in the evaluation is described. Section
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5 gives results and discussion. Finally section 6 summa-
rizes the paper and shows future directions.

2. Distance metrics

A spike train of node i is expressed as Ti =

(ti(1), ti(2), . . . , ti(ni)), where ti(k) is the time when k-th
spike was emitted by node i and n is the number of spikes
of node i. Given a pair of spike trains T1 and T2, the Ham-
ming distance is derived as |T1|+ |T2|−|{(k, j)|t1(k) = t2( j)}|.

We also evaluated the modulus-metric proposed in [4].
It is based on the Hausdorff distance, which is a function
of the distance between an arbitrary time and the nearest
spike. The distance is derived as the integral of the differ-
ence between two spike trains. Given two spike trains T1
and T2, the modulus-metric d between them is given by

d =
∫
|d(s,T1) − d(s,T2)|ds, (1)

where d(s,T ) = inft∈T |t − s| for time s ∈ R. If either
of spike trains contains no spike at all, d(s,T ) cannot be
defined. Thus the distance is considered zero [4].

Additionally, we used the D-spike and D-interval. The
D-spike quantifies the cost of adding, removing, and mov-
ing spikes to match two spike trains [5]. The cost of addi-
tion and removal of a spike is one. The cost of moving a
spike by time ∆t is given as q∆t. q (q ≥ 0) is a parameter.
The minimum cost of manipulation is regarded as the dis-
tance. The case of q = 0 is called the D-count, where the
difference in the number of spikes is the distance. The D-
interval quantifies the cost of adding, removing, extending,
and shortening spike intervals [5]. The cost of addition and
removal of an interval is one and the cost of extension and
shortening is q∆t. The minimum cost is the distance. We
considered 1 [ms] as the moving distance ∆t = 1.

In addition to those spike train metrics, we evaluated the
spectral radius, which is used as an indicator of the perfor-
mance of an echo state network, that is, another reservoir
computing model [6]. The spectral radius is derived as the
maximum absolute value of eigenvalues of an adjacency
matrix of a neural network. We defined the difference in
the spectral radii before and after physical failures as the
distance.

3. Network model

To investigate the influence of the liquid structure on dis-
tance metrics and task performance in facing to physical
failures, we used six network models: random (RD), Watts-
Strogatz (WS), ring (RI), Barabási-Albert (BA), distance-
based (DB), and human connectome (HC). The RD con-
nected a pair of randomly selected nodes by a link in
the random direction, without allowing duplicated connec-
tions, until the number of links reached the targeted num-
ber. A WS network was generated based on [7], where the
rewiring probability was 0.2. A network before rewiring

was called a RI network. Regarding the BA [8], the size of
an initial network was 5.

With the DB, a link was established between a pair of
nodes in a stochastic manner. Specifically, the probability

to connect node a to node b was given as C exp
(
−
(

D(a,b)
λ

)2)
,

where D(a, b) is their Euclidean distance. The parameter C
was 0.3, 0.2, 0.4, or 0.1, depending on the type of nodes,
i.e., excitatory (E) or inhibitory (I), as EE, EI, IE, and II,
respectively. λ was set at 1.5.

Finally, the HC [9] generated a network which had the
degree distribution, the clustering coefficient, the between-
ness centrality, and the edge length distribution similar to
the human connectome. It was accomplished by connect-
ing nodes a and b with the probability D(a, b)ηK(a, b)γ,
where K(a, b) = |Γa\b∩Γb\a |

|Γa\b∪Γb\a | . Here, Γa\b is a set of nodes con-
nected with node a except for node b.

4. Setting

In the NARMA task, the input u(n) was a series of uni-
form random numbers in the range of 0 to 0.5. The task
was to estimate a series of d(n) defined as follows.

d(n + 1) =a1d(n) + a2d(n)
m−1∑
i=0

{d(n − i)

+ a3u(n − m + 1)u(n) + a4}
(2)

The parameter m corresponds to the number of preceding
steps which the output d(n) depends on. Therefore, it is
necessary for a liquid to have the sufficient memory capac-
ity to accurately estimate d(n) with a large m.

In our evaluation, each u(n) was given to 30% of nodes
in a liquid as a constant input for the period of 1.5 [ms].
We used a1 = 0.3, a2 = 0.05, a3 = 1.5, and a4 = 0.1.
Then, based on spike trains of all nodes during the period,
a output layer estimated d(n) by using the Ridge regression.

We first generated 100 liquid networks of 200 nodes for
each of the network models. Next, for each network, we
evaluated the task performance of the cases of 10 different
values of m = 2, 4, 6, . . . , 20 and 10 different setting of link
failures: no failure, 10%, 20%, . . . , 90% of links were ran-
domly removed from a liquid. As a performance measure,
we used the normalized root mean square error (NRMSE).
For each of failure probability, NRMSE was averaged over
results of 10 values of m of each network of each network
model. Finally, by subtracting the average NRMSE with-
out failures from the average NRMSE with failures, we
obtained the change in NRMSE for each network of each
network model. Regarding the distance metrics, first the
distance was calculated between spike trains before and af-
ter failures of a certain failure probability for each of 200
nodes of each network of each network model. Then, the
distance was averaged over 200 nodes and we obtained the
change in the distance for each network of each network

– 348 –



Figure 1: Relationship between failure probability and es-
timation error

model. Finally, we evaluated the correlation coefficient be-
tween a pair of the change in NRMSE and the change in
the distance for each network of each network model.

5. Results

Figures 1 shows the changes in the average estimation
error. As shown in Fig. 1, the estimation error monoton-
ically increased as the failure probability increased, inde-
pendently of network models. On the contrary, depend-
ing on metrics, there are a variety of curves in Fig. 2 for
the case of the RD as an example. The correlation coeffi-
cients are summarized in Fig. 3 using violin plots. Red dots
represent averages. Upper and lower horizontal bars show
the maximum and minimum coefficients, respectively. Al-
though all metrics had the wide distribution and there were
differences among network models, the D-spike except for
q = 1 and D-interval had the relatively high correlation.

The spectral radius had the high correlation in the RD
and HC. Basically, from its definition, the spectral radius is
related to the number of elements in an adjacency matrix.
As a result, the distance linearly increased as the number of
links decreased. On the other hand, Fig. 1 shows that the
increase in the change in the estimation error became small
when the failure probability was high in the WS, RI, BA,
and DB models, which resulted in the low correlation.

Regarding the Hamming distance, the correlation was
relatively low and similar with the D-spike (q = 1). Since
spike emission was intermittent and sparse, the Hamming
distance was well related to the number of spikes. Actu-
ally, the correlation coefficient between the Hamming dis-
tance and the change in the number of spiked before and
after failures was 0.999. In the range of small failure prob-
ability, the number of spikes increased, because removing
links from inhibitory nodes had the strong influence to al-
low nearby nodes to emit spikes. On the other hand, in the
range of high failure probability, where many links had al-
ready been removed, the number of spikes decreased. It
is a reason why the Hamming distance had the peak at

Figure 2: Relationship between failure probability and dis-
tance (RD model)

the failure probability of 60% and the correlation became
small. In the case of the D-spike (q = 1), because moving
a spike costs much, addition and removal of spikes were
mainly conducted. Therefore, the distance corresponded to
the number of spikes similarly with the Hamming distance.

The modulus-metric had the lowest correlation coeffi-
cient. Based on the definition, the average of d(s,T ) de-
creases as the number of spikes increases, and vice versa.
Therefore, the difference between averages of d(s,T1) and
d(s,T2) increased as the difference in the number of spikes
in spike trains T1 and T2 increased. As discussed, the num-
ber of spikes first decreases and then increases according
to the failure probability. In addition, there were nodes that
did not emit spikes at all. In such a case, the distance was
considered zero, which affected the distance. Consequently
the change in the distance had the peak at the failure prob-
ability of 50%, and it made the correlation coefficient low.

The correlation coefficients of D-spike except for q = 1
and D-interval were high in the RD and HC models. There
distances were roughly proportional to the absolute value
of the difference in the number of spikes, whereas the value
of q affected the results. As discussed, the average differ-
ence in the number of spikes had the peak at the failure
probability of around 60%. However, unlike the Hamming
distance, those metrics kept increasing. As mentioned in
the case of the modulus-metric, there were nodes that did
not fire at all due to failures. On such nodes, the difference
in the number of spikes before and after failures became
negative and rapidly decreased. As a result, the absolute
value of the difference kept increasing and thus the distance
of those metrics monotonically increased. Consequently,
the change in the distance had the high correlation with the
change in the estimation error of the RD and HC models.

6. Conclusion

In this paper, we investigated distance metrics to evalu-
ate the functional robustness of a liquid from its dynamics.
As a result, we found that D-spike (q = 0, 0.01, and 0.1)
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(a) RD model (b) WS model (c) RI model

(d) BA model (e) DB model (f) HC model

Figure 3: Correlation coefficient between distance metrics and estimation error

and D-interval (q = 0, 0.01, 0.1, and 1) were suitable for
evaluation especially for the RD and HC model networks.

However, those metrics had lower correlation for the
other models. Therefore, as the next step of the research,
we plan to investigate and design distance metrics which
are highly correlated with the performance independently
of network models. In parallel to this, we also need to ex-
amine other tasks to confirm task and readout-independent
distance metrics. Furthermore, we need to consider node
failures, where not only a node but all connected links are
lost at once. It affects both of the dynamics of a liquid and
the performance.
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