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Abstract—Non orthogonal multiple access (NOMA)
schemes have been proposed to meet the growing wireless
communication capacity of the next generation. To fully
utilize the advantages of NOMA schemes, highly com-
plex resource allocation (RA) optimization problems need
to be solved in real time. To achieve this, we propose a
fast RA method for the NOMA system using the coher-
ent Ising machine (CIM). The CIM is an Ising system that
artificially reproduces the Ising model, a physical model
of interacting magnetic spins, and searches for the ground
state, the lowest energy state of the Ising model, at high
speed. Because many optimization problems can be trans-
formed into Ising problems, which are problems for search-
ing the ground state of the Ising model, CIM can be used
to solve NOMA RA optimization problems. The interac-
tion between the spins and the external magnetic field on
the spins must be set for each spin of the Ising model to
solve the Ising problem. Usually, the value of the exter-
nal magnetic field is considerably larger than that of the
interaction; thus, when solving the Ising problem using the
CIM, large values of the external magnetic field in the Ising
model may cause instabilities in the actual CIM, resulting
in decreased performance. Therefore, in this study, we for-
mulate a stability-aware formulation in which the external
magnetic field is removed from the Ising model. To eval-
uate the proposed method, the stability-aware and conven-
tional formulations were compared using simulations re-
garding the NOMA system data rate. The simulation re-
sults show that the stability-aware formulation had a per-
formance similar to that of the conventional formulation.
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1. Introduction

Hardware-based algorithms, such as Ising machines,
have been proposed as methods for solving optimization
problems. The coherent Ising machine (CIM) [1] is an
Ising machine that reproduces Ising spins using an opti-
cal laser network and delivers fairly approximate solutions
to optimization problems in milliseconds. Many NP-hard
problems can be transformed into ground state search prob-
lems for the Ising Hamiltonian, the energy model of Ising
spin (i.e., the Ising problem) [2]. The CIM is a machine
that searches the ground state of the Ising Hamiltonian at
high speed. For example, Ref. [3] shows that the CIM can
be used to obtain a solution to the 100000-node MAX-CUT
problem approximately 1000 times faster than cutting-edge
digital computers. Therefore, the CIM can be used to find
fast solutions to many NP-hard optimization problems.

To solve the optimization problem using the CIM, it is
necessary to derive the interaction and external magnetic
field, which are the parameters of the Ising model corre-
sponding to the optimization problem. The value of the
external magnetic field is usually larger than that of the in-
teraction and likely to induce inhomogeneity in the ampli-
tude of the optical pulses representing the spins in the CIM.
Therefore, when solving optimization problems, their large
value may induce instabilities in the actual CIM, leading to
a decrease in performance. Therefore, in this study, we in-
vestigate the performance by formulating the Ising model
to remove the external magnetic field from the model.

Non orthogonal multiple access (NOMA) schemes have
been proposed as one of the key technologies for next-
generation communication schemes [4]. Unlike conven-
tional orthogonal multiple access (OMA) systems, multi-
ple user signals can be multiplexed on the same channel
for communication. To benefit from the NOMA scheme,
appropriate channel and power resources should be allo-
cated to all users [5]. In previous studies, machine-learning
and heuristic algorithms have been used to optimize the re-
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Figure 1: System model

source allocation (RA) problems. However, this type of RA
problem has been proven to belong to NP-hard [6]. There is
a fundamental trade-off between the optimal solution attain
rate and computation time, making the real time optimiza-
tion required for wireless communication systems difficult.

To solve the RA problem for the NOMA system at high
speed, we first focus on the high speed of the CIM and
apply it to a fast optimization of the NOMA optimization
problem. Subsequently, considering the stability of the ac-
tual CIM, we apply the CIM without an external magnetic
field to the RA problem in the NOMA system. The perfor-
mance in terms of system data rate is evaluated for the CIM
with and without an external magnetic field.

2. System Model and Problem Formulation

We assume a downlink NOMA system in which the base
station (BS) transmits to users in a circular cell (Figure 1).
At the BS, based on the channel state information, chan-
nel and power optimizations are performed using the CIM
equipped in the BS. Note that performance varies greatly
depending on which users are multiplexed and assigned to
which channels. Let the set of users in the NOMA sys-
tem be U = {1, 2, . . . , u, . . . ,Nu} and the set of subchannels
be C = {1, 2, . . . , c, . . . ,Nc}. We define the carrier-to-noise
ratio (CNR) for user u using channel c as follows:

Γc
u =

∣∣∣hc
u

∣∣∣2
σ2

zc

, (1)

where hc
u is the response between the BS and the user

when user u transmits using channel c and σzc is the vari-
ance of additive white Gaussian noise. Let us assume that
Γc

1 > . . . > Γ
c
u > . . . > Γ

c
Mc

holds when up to Mc users
are multiplexed on channel c. Because the NOMA system
allocates more power to users with lower CNR [5], the re-
lationship Pc

1 < . . . < Pc
u < . . . < Pc

Mc
holds, where Pc

u is
the power allocation factor for user u in channel c. The SIC

performed at the receiver allows each user to easily identify
and remove the signals of users assigned to higher power.
According to these principles, the data rate that user u can
achieve on channel c is as follows:

Rc
u = Bc log2

1 + Pc
uΓ

c
u

1 +
∑u−1

i=1 Pc
iΓ

c
u

, (2)

where Bc is the bandwidth of channel c. In this study, we
consider the case where up to two users are multiplexed on
a single channel; that is, Mc = 2. The data rate achieved by
a user assigned to channel c is as follows:

Ri jk =

Bc log2

(
1 + Pi jkΓ

j
i

)
, if Γ j

i > Γ
j
k,

Bc log2

(
1 + Pi jkΓ

j
i

1+Pi jkΓ
j
i

)
, otherwise,

(3)

where Ri jk and Pi jk are the achievable data rate and the al-
located power by user i ∈ U when communicating with
user k ∈ U on channel j ∈ C, respectively. We aim to
maximize the total data rate of the NOMA system. The
objective function is formulated as follows:

max
x

Nu∑
i=1

Nc∑
j=1

Nu∑
k=1
k,i

(
R j

ik + R j
ki

)
xi jxk j (4)

s.t.
Nc∑
j=1

xij ≤ 1, for ∀i, (4.a)

Nu∑
i=1

xi j ≤ 2, for ∀ j, (4.b)

where xi j ∈ (0, 1) represents the channel assignment vari-
able: xi j = 1 if user i allocated channel j and xi j = 0 other-
wise. Eqs. (4.a) and (4.b) indicate that users communicate
using only one channel and up to two users are multiplexed
onto one channel, respectively. Additionally, power alloca-
tion is optimized following the method described in [5].

3. Coherent Ising Machine

The CIM is an Ising machine that artificially repro-
duces the behavior of Ising spins. Let us assume a two-
dimensional spin group of N × M. The Ising Hamiltonian
representing the energy of the Ising model is as follows:

E(σ) = −
1
2

N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

Ji jklσi jσkl +

N∑
i=1

M∑
j=1

λi jσi j, (5)

where σi j ∈ (−1,+1) is the orientation of the (i, j)th spin,
Ji jkl is the interaction between the (i, j)th and (k, l)th spins,
and λi j is the external magnetic field on the (i, j)th spin.
Here, the Ising spins converge to the most energy stable
state (i.e., the state that minimizes Eq. (5)). Therefore, by
determining Ji jkl and λi j so that the optimal solution to the
optimization problem is set to the ground state of Eq. (5),
the optimization problem can be solved using the CIM.
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Figure 2: Coherent Ising machine [1]

Figure 2 shows the CIM with measurement and feed-
back. In the measurement-feedback CIM, the in-phase am-
plitude of degenerate optical parametric oscillator (DOPO)
pulses ci j ∈ (0, π) correspond to the spin orientation σi j ∈

(−1,+1). In operation, the DOPO pulses separated by the
coupler are measured in-phase amplitude ci j by the bal-
anced homodyne detector(BHD). Subsequently, based on
the measured amplitude, the interaction Ji jkl and exter-
nal magnetic field λi j are calculated using the field pro-
grammable gate array (FPGA) module and the calculated
pulse finally feeds back to the original pulse. This way, the
full coupling of spins can be reproduced, and larger-scale
spins can be realized.

4. RA Optimization Problem in NOMA with the CIM

4.1. Applying the CIM to NOMA

To solve optimization problems using the CIM, it is nec-
essary to derive Ji jkl and λi j corresponding to the prob-
lem. However, it is difficult to map a binary variable op-
timization problem, such as Eq. (4), directly to Eq. (5).
Therefore, we first apply the Hopfield-Tank neural network
(HTNN) [7] to Eq. (4). The energy function to be mini-
mized by the HTNN is as follows:

E(x) = −
1
2

N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

wi jklxi jxkl +

N∑
i=1

M∑
j=1

θi jxi j, (6)

where xi j ∈ (0, 1) is the state of the (i, j)th neuron, wi jkl is
the coupling weight of the (i, j)th and (k, l)th neurons, and
θi j is the firing threshold of the (i, j)th neuron. From Eqs.
(5) and (6), the energy function of the HTNN has a struc-
ture similar to that of the Ising Hamiltonian. Therefore,
we first derive wi jkl and θi j by comparing Eq. (6) with Eq.
(4) to apply the NOMA RA problem to the HTNN. Subse-
quently, by converting the output of the HTNN from (0, 1)
to (−1,+1), we can derive the Ji jkl and λi j.

First, we transform Eqs. (4), (4a) and (4b) into Eqs. (7),
(7a) and (7b), respectively, to put them in a form that can
be compared with Eq. (6).

E1 =

Nu∑
i=1

Nc∑
j=1

Nu∑
k=1

Nc∑
l=1

−δ jl (1 − δik)
(
R j

ik + Rl
ki

)
xi jxkl, (7)

Table 1: Simulation parameters
Parameters Values

Total Bandwidth B 5.0 MHz
Path loss coefficient α 4.0

Minimal distance between user and BS 50 m
Noise power spectral density -170 dBm/Hz

E2 =

Nu∑
i=1

Nc∑
j=1

Nu∑
k=1

Nc∑
l=1

δik
(
1 − δ jl

)
xi jxkl −

Nu∑
i=1

Nc∑
j=1

xi j, (7.a)

E3 =

Nu∑
i=1

Nc∑
j=1

Nu∑
k=1

Nc∑
l=1

δ jl (1 − δik) xi jxkl−3
Nu∑
i=1

Nc∑
j=1

xi j, (7.b)

where δi j is Kronecker’s delta: δi j = 1 if i = j and δi j = 0
otherwise. Thus, the energy function of the NOMA opti-
mization in the HTNN is as follows:

ENOMA = αE1 + βE2 + γE3, (8)

where α, β, and γ are parameters that adjust the scaling of
each term. From the above, by comparing Eqs. (8) and (6),
wi jkl and θi j of the HTNN can be calculated as follows:

wNOMA
i jkl =2{αδ jl (1 − δik)

(
Ri jk + Rkli

)
− βδik

(
1 − δ jl

)
− γδ jl (1 − δik)},

(9)

θNOMA
i j = − (β + 3γ) . (10)

Finally, using σi j = 2xi j − 1 to set the output of the neuron
to (−1,+1), Ji jkl and λi j are obtained as follows:

JNOMA
i jkl =

wi jkl

2
, λNOMA

i j = θi j −

Nu∑
k=1

Nc∑
l=1

wi jkl

2
. (11)

By setting these parameters, the RA problem in the NOMA
system can be solved at high speed using the CIM.

4.2. Simulation Results

In this subsection, simulations are performed to evalu-
ate the performance of the proposed method. Specifically,
the proposed method is evaluated by comparing the simu-
lated annealing (SA) and the exhaustive search (ES) with
respect to the data rate when the number of users changes.
To evaluate the proposed method, the simulation models of
the CIM shown in [8] are used. The simulation assumes a
scenario where users are randomly placed in a 500-m cir-
cular cell. Here, the channel gain between user u and BS
using channel c can be calculated as follows:∣∣∣hc

u

∣∣∣2 = (gc
u
)2 d−αu , (12)

where gc
u represents the Rayleigh distribution, d−αu is the

distance between user u and the BS, and α is the path loss
coefficient. Other simulation parameters are shown in Ta-
ble 1. Figure 3 shows that the proposed method can
achieve the same performance as the ES. This indicates that
the proposed method is superior not only in the optimiza-
tion speed but also in searching for the best solutions.
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Figure 3: Total data rate versus the number of users

5. RA Optimization Problem in NOMA Using CIM
Without an External Magnetic Field

In the last section, we applied the CIM to NOMA by ob-
taining the interaction between spins JNOMA

i jkl and the exter-
nal magnetic field λNOMA

i j . Generally, the external magnetic
field λi j in the Ising Hamiltonian is considerably larger than
the strength of the interaction Ji jkl. Its large λi j is likely to
induce amplitude instability in the actual CIM, which may
cause a performance decrease. Therefore, in this section,
we attempt to overcome these problems by reformulating
the parameters of the Ising model. Specifically, we con-
sider increasing the number of spins to reproduce λi j .

First, the N × M two-dimensional array of spins is ex-
tended to a two-dimensional array of (N+Nex)× (M+Mex)
spins. Here, Nex and Mex represent the number of addi-
tional spins corresponding to N and M, respectively. Sec-
ond, each additional spin adds a λi j/(Nex + Mex) strength
of the interaction to the existing spins, which adds an inter-
action equal to the original λi j. This allows the spin to be
affected by the external magnetic field without the λi j term
in Eq. (5). Note that all additional spins must be in the
same orientation to reproduce the λi j. The Ising Hamilto-
nian with additional spins is given as follows:

E(σ) = −
1
2

N+Nex∑
i=1

M+Mex∑
j=1

N+Nex∑
k=1

M+Mex∑
l=1

Qi jklσi jσkl, (13)

where Qi jkl is the spin interaction, which is as follows:

Qi jkl =


JNOMA

i jkl if i, k ≤ N and j, l ≤ M

λNOMA
i jkl /(Nex + Mex) if i, k > N or j, l > M

Ai jkl if i, k > N and j, l > M

(14)

where the conditions in Eq. (14) indicate that the (i, j)th
spin and the (k, l)th spin are both existing spins, between
existing and additional spins, and both additional spins, re-
spectively. Ai jkl is the strength of the interaction between
the additional spins and is adjusted to keep the additional
spins in the same orientation.

Simulation is conducted for the case with and without an
external magnetic field to evaluate performance. The eval-
uation assumes a NOMA system with 10 randomly placed
users, and the simulation parameters are shown in Table 1.
Additionally, simulations were performed for α = 3 and
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Figure 4: Total data rate with and without a magnetic term

α = 4. Figure 4 shows that the performance is almost iden-
tical with and without the magnetic fields. These differ-
ences will become more pronounced when the actual CIM
is used instead of the simulation model.

6. Conclusions

In this study, we focused on the CIM for fast optimiza-
tion of highly complex NOMA RA problems. The simu-
lation results show that the CIM-based RA optimization is
not only in the optimization speed but also in searching for
the best solution. Additionally, by formulating considering
the stability, the performance of NOMA RA optimization
without external magnetic fields is indicated. Future stud-
ies will investigate evaluation using the actual CIM.
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