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Abstract–Optical satellite communications enable high-

capacity communications, one of the fundamental technol-

ogies for a non-terrestrial network in Beyond 5G/6G. It is 

affected by the interruption of optical communications due 

to clouds on the communication path. A satellite can miti-

gate the interruption by switching its destination ground 

station to another, though it brings additional delays in ac-

quiring the beam. In this study, we propose a ground station 

selection method using a reinforcement learning algorithm 

to realize a fast and stable satellite-terrestrial optical com-

munication system. We show its effectiveness through sim-

ulation evaluation using pseudo and real data. 
 

1. Introduction 

 

In Beyond 5G/6G, Non-Terrestrial Networks (NTN) that 

connect space to the ground in three dimensions are 

expected to be realized [1]. Optical satellite communica-

tions [2], which enable broadband and high-capacity 

communications, have been attracting attention as one of 

the fundamental technologies for NTNs. 

Optical satellite communication is a technology that uses 

wireless light instead of radio waves to communicate with 

satellites. Compared with radio frequency (RF) comm-

unications, which is conventional wireless communication 

technology, optical satellite communications have features 

such as extremely high bandwidth, ease of introduction, 

license-free frequency allocation, low power consumption 

(~1/2 that of RF), small size (~1/10 of RF antenna 

diameter), and improved channel security [2]. 

In optical satellite communications, when clouds exist on 

the communication path between a satellite and a ground 

station, optical communications are blocked by the clouds 

[2]. Switching the ground station to communicate with can 

recover the communication in such a situation. However, it 

brings an additional delay in the acquisition of the beam [3]. 

Therefore, it is necessary to select an appropriate ground 

station while avoiding redundant switching. In related 

research, site diversity, which establishes optical satellite 

communication lines by combining multiple optical ground 

stations, has been studied[4]-[7]. In [4], an optical ground 

station network is optimized by using the correlation of 

weather conditions among optical ground stations. In [5], 

the authors assume a downlink optical satellite communica-

tion system that aims to communicate with the best optical 

ground station among multiple sites. In this system, they 

select and communicate with the ground station with the 

highest SNR by using a channel model that takes into 

account fading due to turbulence and atmospheric attenua-

tion due to scattering. In [6], the effect of clouds on free-

space optical communication is quantitatively analyzed to 

determine the appropriate placement of ground stations. In 

[7], the availability of each optical ground station is 

determined from environmental data collected in satellite-

to-ground optical communications, and efficient site 

diversity is discussed. These studies focused on the 

placement of optical ground stations. However, they do not 

discuss how to autonomously select optical ground stations 

in response to changing channel conditions. 

In this study, we apply a reinforcement learning 

algorithm to a satellite-to-ground optical communication 

system and propose a method that a satellite selects ground 

stations against cloud effects autonomously. We design a 

reinforcement learning algorithm using channel quality as 

a state, ground station selection as an action, and through-

put as a reward. The performance of the proposed method 

is evaluated by using real data collected by the Observation 

System of the Patch of Blue Sky for Optical Communica-

tion (OBSOC) [8]. 

 

2. System Model 

 

Free-space optical communication requires a LOS con-

nection between the transmitter and receiver. Here, the 
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information signal from the transmitter is modulated on an 

optical carrier, and this modulated signal is propagated 

through an atmospheric channel or free space toward the 

receiver [3]. Therefore, the weather affects such optical 

communications between satellites and the ground. 

NICT has deployed an environmental data collection 

system, OBSOC, at 10 locations [9]. In this system, envi-

ronmental data acquired at each observation station is 

stored in a database and analyzed. Each weather station is 

equipped with an all-sky camera to identify clear areas, a 

cloud cover/cloud height meter to measure the amount and 

height of clouds, and various meteorological data. The data 

collected by these instruments are used to determine 

whether optical communication is possible, and the data is 

stored as shown in Figure 1, with 1 indicating that optical 

communication is possible and 0 indicating that it is not 

possible. 

 

  
(a) (b) 

Fig.1.  Real data: Channel state. 

(communication available: blue, not available: white) 

 

In this study, we assume a downlink satellite-to-ground 

optical communication system that transmits data from one 

satellite to K optical ground stations 𝑖 = {1,2, ⋯ 𝐾}  as 

shown in Figure 2. The quality of the link is modeled as 1 

if communication is possible and 0 if communication is not 

possible. The satellite selects a ground station at every time 

𝑡 = {1,2, ⋯ 𝑇}. If there is a cloud between the satellite and 

the ground station, the optical communication is inter-

rupted. Delay occurs when switching the ground station to 

be communicated with. Throughput needs to be maximized 

for fast and stable communication and defined below, 

Throughput＝𝑀𝑡𝑜𝑡𝑎𝑙/∆𝑡 (1) 

where 𝑀𝑡𝑜𝑡𝑎𝑙  is the total amount of data received at the 

ground stations during ∆𝑡.  

3. Ground Station Selection Using RL algorithms 

 

We propose a ground station selection method using a re-

inforcement learning algorithm. The flowchart of the inter-

ground station selection is shown in Figure 3. The reward 

𝑟𝑖 for selecting the ground station 𝑖 is the throughput at a 

certain time 𝑙 [min], 

𝑟𝑖(𝑡) = 𝑀𝑙/𝑙 (2) 

where 𝑀𝑙 is the amount of data received by all ground sta-

tions during 𝑙. We examine proposed method in four rein-

forcement learning algorithms described in the following 

subsections. 
 

 
Fig.3.  Flowchart of ground station selection. 

 

3.1. 𝜀-greedy 
 

The 𝜀-greedy algorithm is an action selection method 

that selects one of all actions with probability 𝜀 (explora-

tion) and the action with the greatest action value with 

probability 1-𝜀 (exploitation). The action value is the ex-

pected value of the reward for selecting each action. It is 

used in reinforcement learning to balance exploration and 

exploitation. It is a simple algorithm and is widely used for 

solving MAB problems. The ground station to be selected 

at time 𝑡 is denoted as 

𝑎(𝑡) = {
argmax

𝑖=1,...,𝐾
(𝑟𝑖̅(𝑡))     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀
  (3) 

where 𝑟̅𝑖(𝑡) denotes the average reward up to 𝑡. 
 

3.2. UCB1-Tuned 
 

UCB1-Tuned [9] performs ground station selection by 

considering the reward probability and confidence interval. 

The 𝜀-greedy algorithm, which is considered the best per-

forming of the current MAB algorithms, fails to consider  

the number of times each ground station is selected. In 

UCB1-Tuned, each ground station is initially selected, and 

then the ground station 𝑎(𝑡) is selected on the 𝑡 th trial ac-

cording to the following equation. In UCB1-Tuned, the 

     

                             

                     

         

                          

    

            

   

     

   

      

   

     
    

    

  

Fig.2. System model. 
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ground station is selected on each trial according to the fol-

lowing equation,  

𝑎(𝑡) = argmax
𝑖=1,...,𝐾

(𝑟̅i(𝑡) + √
ln𝑡

𝑛𝑖

min (
1

4
，𝑉𝑖(𝑛𝑖))) (4) 

where 𝑟̅i(𝑡) denotes the average reward up to 𝑡, min() is a 

function that adopts the lower value, 𝑛𝑖 means the number 

of times each ground station is selected. 𝑉𝑖(𝑛𝑖) is expressed 

by the following equation using the estimated variance. 

𝑉𝑖(𝑛𝑖) = (𝑟̂𝑖(𝑡))2 + √
2 ln 𝑡

𝑛𝑖

(5) 

where r̂𝑖 denotes the variance value of the acquired reward 

up to 𝑡． 
 

3.3. Q-Learning 
 

Q-Learning is a type of reinforcement learning, a ma-

chine learning algorithm that seeks a strategy to maximize 

the reward for an agent placed in a certain environment. 

The past channel quality is the state, and the ground station 

selection is the action.  The equation for updating the Q-

value is given below. 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟𝑖(𝑡) + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

 (6) 

where 𝑄(𝑠, 𝑎) is a function that stores the evaluation of ac-

tion 𝑎 in state 𝑠. 𝛼 is a parameter that adjusts the amount of 

modification of the value of the Q function and takes the 

value (0 < α < 1) . The𝛾  is a parameter that determines 

how much the expectation of the next state evaluation is 

considered when updating the Q function and takes the 

value (0 < γ < 1). In Q-Learning, the action value func-

tion, which determines the evaluation value of an action in 

a given state, is defined as a function of TD (temporal dif-

ference) error. In Q-Learning, the action value function, 

which determines the evaluation value of an action in a cer-

tain state, is updated so that the TD (temporal difference) 

error becomes 0. That is, the number of action values is up-

dated so that the value of the Q function, 𝑄(𝑎) , is the sum 

of 𝑟𝑖(𝑡)  and the maximum possible value of an action 

𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) in the next state 𝑠. In this study, past states 

from time 𝑡 to 𝑗 time step before are treated as state 𝑠. Ta-

ble 1 shows an example of a channel state for 𝐾 = 5, where 

𝛿 is a parameter that determines how much of the past state 

is referenced. 

3.4. Deep Q-Network (DQN) 
 

DQN is an algorithm that replaces the Q-table in Q-

Learning with a neural network. In the target system, the 

Q-table is so large that it is difficult to obtain an optimal 

solution. The satellite, which is an agent, inputs the state of 

the environment to the neural network, selects from the 

value of each action outputted, and obtains a reward. In 

DQN, a neural network 𝑤 is formed from 𝑄(𝑠, 𝑎). In this 

case, the weight of the neural network is set to 𝑤 , and 

𝑄(𝑠, 𝑎, 𝑤) ≈ 𝑄(𝑠, 𝑎). The deep network is trained to mini-

mize the error function. The error function 𝐿(𝑤)  is ex-

pressed by the following equation [10]. 

𝐿(𝑤) = 𝐸 [(𝑟(𝑡) + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))
2

] (7) 

 Experience Replay is used to ensure stable learning in 

DQN. The agent's experience at each time step is stored in 

a dataset, and the deep network is trained on a mini-batch 

of experiences drawn uniformly at random from the stored 

samples. We also perform a fixed target deep network; 

when updating the Q-network, we update it using the net-

work from a certain time step ago. Here, the value of past 

actions is learned as the target. 

 

4. Evaluation by Simulation 

 

In this evaluation, the effectiveness of the proposed 

method is verified using pseudo data and real data. As real 

data, we used the channel state of the optical communica-

tion availability judgment at five locations observed and 

published by OBSOC [8], and used the data collected every 

minute. In addition, pseudo data was created by imitating 

the real data. The pseudo data are the channel states 

(available for communication: 1, not available: 0) that are 

changed according to the transition probability. As shown 

in Figure 4, 𝑝 is the probability of transitioning from 0 to 1 

and 𝑞 is the probability of transitioning from 1 to 0. Table 

2 shows the parameters used in the simulations. 

 

 
Fig.4. Pseudo data: Channel state. 

 

Table.2. Parameters used in the simulations. 

Parameters Value 

Number of ground stations K 5 

Number of time step referenced 𝑗 5 

Availability rate 0.2, 0.8 

Data rate 10Mbps 

Acquisition delay 120s 

Transition probability 𝑝, 𝑞 0.034, 0.009 

 

  

  

 

 
      

 Ch1 Ch2 Ch3 Ch4 Ch5 

𝒕 − 𝟓𝜹 1 1 0 1 0 

𝒕 − 𝟒𝜹 1 1 1 0 0 

𝒕 − 𝟑𝜹 1 0 0 1 1 

𝒕 − 𝟐𝜹 1 1 1 0 0 

𝒕 − 𝜹 1 1 0 0 0 

𝒕 ? ? ? ? ? 

Table.1.  An example of channel state. (𝐾 = 5, 𝑗 = 5) 
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We use 𝜀-greedy, UCB1-Tuned, Q-Learning, and DQN 

as ground station selection methods based on reinforcement 

learning algorithms, and as comparison methods, we use 

random selection and greedy. The value for communicating 

with the ground station with the highest probability of 

successful communication is optimum. The parameters 

used in the RL algorithm are listed in Table 3. 
 

Table.3. Parameters used in the RL algorithm. 

Parameters Value 

𝑙 5 min 

𝛿 11 

ε 0.001 

γ 0.9 

 

The ratio of time when communication is possible to 

when communication is not possible is called availability 

rate, and simulations were performed for availability rate 

=0.8 and availability rate =0.2. Figure 5 shows the commu-

nication success rate, Figure 6 shows the number of switch-

ing cycles, and Figure 7 shows the throughput for each 

method. The dashed line means optimum. It is indicated 

that DQN can improve the throughput compared to opti-

mum. DQN shows higher throughput than the other meth-

ods at both high and low Availability rate, indicating that 

DQN is able to cope with changes in the environment.  

 

  
(a)availability rate:0.8 (b)availability rate:0.2 

Fig.5.  Pseudo data: Communication success rate. 

 

  
(a)availability rate:0.8 (b)availability rate:0.2 

Fig.6.  Pseudo data: Number of switching. 
 

  
(a)availability rate:0.8 (b)availability rate:0.2 

Fig.7. Pseudo data: Throughput. 

Figure 8 shows the simulation results using real data. The 

dashed line means optimum. The results show that DQN 

has the highest throughput in both (a) and (b). In particular, 

DQN greatly improves the throughput when the availability 

rate is high as in (a). It is indicated that the reinforcement 

learning algorithm is effective in selecting ground stations 

in real environments. 
 

  
(a) (b) 

Fig.8. Real data: Throughput. 

 

5. Conclusions 

 

In this study, we have proposed a ground station selec-

tion method based on a reinforcement learning algorithm 

for high-speed and stable satellite-to-ground optical com-

munications. We have evaluated the proposed scheme us-

ing real data collected by OBSOC. We have demonstrated 

that the throughput can be improved by the proposed 

scheme that uses the reinforcement learning algorithm for 

ground station selection. In particular, the proposed scheme 

using the DQN shows high throughput in various environ-

ments simulated based on real data. 
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