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Abstract—Pairing optimization plays a critical role in
the latest information and communication technologies,
such as non-orthogonal multiple access (NOMA) in wire-
less communications. Here, all elements in the system
should be pair-wise, or pairing is necessary. The prob-
lem is how to maximize the total performance of the en-
tire system, which we call total compatibility. Understand-
ing the relationships among elements, called compatibility,
is indispensable prior to pairing optimization. This study
demonstrates an efficient algorithm that allows grasping all
compatibility information via the minimum number of ob-
servations. Such an efficient strategy is crucial for dynam-
ically changing environments, notably by mobile wireless
communications.

1. Introduction

Combining n (even number) elements into pairs of pre-
cisely two elements each to form a (n/2)-kind of pairs,
which we call pairing, is one of the critical issues in recent
information and communication systems and economics.
Here we assume that any two elements in the system own
a numerical figure which we refer to as compatibility. Our
interest is to find a pairing that maximizes the total com-
patibility, which is the sum of compatibilities among the
paired elements in the system.

The problem of pairing optimization can be seen,
for example, in the next-generation communication sys-
tem called NOMA (Non-Orthogonal Multiple Access), in
which multiple terminals share a common frequency band
by power domain coordination and signal processing called
SIC (Successive Interference Cancellation) [1–8]. When n
terminals are communicated in pairs, the throughput differs
depending on the location of the terminals.
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In NOMA, all terminals should be paired. Here, it is
remarkable that the total throughput depends on the pair-
ing. However, maximizing the total throughput of the en-
tire system is extremely difficult because the total number
of possible pairings is huge or (n − 1)!!. Here the notation
(n − 1)!! means (n − 1) × (n − 3) × (n − 3) · · · 5 × 3 × 1.

Therefore, a fast pairing optimization algorithm plays a
critical role, and the goal is to develop a pairing optimiza-
tion algorithm with high efficiency and high performance.
In [9], we proposed an algorithm that achieves high per-
formance and efficiency even when more stringent con-
straints are posed on the above-defined pairing optimiza-
tion problem. The constraint is that only total compatibil-
ity is observable, whereas individual compatibilities among
elements cannot be observed directly, which we refer to as
the limited observation constraints.

Wich such limited observation constraints considered,
the algorithm studied in [9] consists of two phases. The first
phase is called observation phase, by which the individual
compatibilities among elements are obtained only via the
measurements of total compatibilities of pairings. We have
shown that the minimum number of observations to acquire
all individual compatibilities is given by (n − 1)(n − 2)/2.
The second is called combining phase in which the pair-
ing that yields high total compatibility is derived based on
information obtained in the observation phase.

Regarding the combining phase, we demonstrate that the
pairing optimization problem can be transformed into a
traveling salesman problem (TSP) of a three-layer graph
structure, which we call Pairing-TSP [9]. Herein, we can
benefit from a variety of heuristic strategies in TSP for ef-
ficiently obtaining a high total compatibility pairing.

Concerning the observation phase, the minimum num-
ber of measurements is found to be (n − 1)(n − 2)/2, as
mentioned above. However, how to accomplish such an ef-
ficient observation is not known yet. This paper focuses
on the observation phase, and demonstrates an observation
algorithm that achieves the minimum number of measure-
ments.
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2. Pairing Optimization

Here we assume that the number of elements is an even
natural integer n. We define the set of all elements U as
follows;

U(n) = {i ∈ Z | 1 ≤ i ≤ n}.

Then, we define the set of all possible pairs U(n) as P(n);

P(n) = {{i, j} | i, j ∈ U(n), i < j} .

Here, we define compatibility matrix C as follows;

C ∈ Mn(R),
1 ≤ i ≤ n,Ci,i = 0,
∀{i, j} ∈ P(n),Ci, j = C j,i.

The set of all compatbility matrix whose size is n × n is
defined as Ωn. With using compatbility matrix C, the com-
patibility of {i, j} is denoted by Ci, j (= C j,i). In addition, we
define the reward function fR : (P(n),Ωn)→ R as follows;

C ∈ Ωn,

{i, j} ∈ P(n),
fR({i, j},C) ≡ Ci, j.

Then, we define pairing S as follows;

∀p ∈ S , p ∈ P(n),⋃
S = U(n),

A, B ∈ S , A , B⇒ A ∩ B = ∅.

With above definitions, Csum(S ,C), which is called the total
compatibility of pairing S hereafter, is defined as follows;

Csum(S ,C) =
∑
p∈S

fR(p,C).

We define the set of all pairings S(n) ≡ {S } when a number
of elements is n. Finally, the pairing problem discussed in
this study is formulated as follows;

max: Csum(S ,C),
subject to: S ∈ S(n).

3. Proposed Observation Algorithm

3.1. Mathematical property of compatibility matrix

Our previous study shows that the minimum number of
observations to acquire the compatibility matrix is (n −
1)(n − 2)/2 [9]. On the other hand, the number of lin-
early independent elements in the compatibility matrix is
n(n − 1)/2. That is, the degree of freedom of the minimum
number of observation is smaller than the degree of the lin-
early independent elements by a factor of N−1. This means
that an infinite number of compatibility matrices provides
the same total compatibility set.

Hence, we introduce an equivalence class to examine the
mathematical structure behind. We define an equivalence
class regarding the relation ∼ between compatibility matri-
ces C and C̃ by the following;

C ∼ C̃ iif ∀S ∈ S(n),Csum(S ,C) = Csum(S , C̃). (1)

The proposed minimum number of observations algorithm
finds the following compatibility matrix.

C̃i, j

=

0, if 1 ∈ {i, j},
Ci, j −C1,i −C1, j +

2
n−2
∑n

k=2 C1,k, otherwise.
(2)

3.2. Linear Independent Pairing Set

It is important to know which pairings to observe in
this study because of the limited observation constraints.
To achieve the minimum number of (n − 1)(n − 2)/2 ob-
servations, we need to perform observations on a set of
(n − 1)(n − 2)/2 linearly independent pairings. Here we
define L, which we call Linearly Independent Pairing Set
(LIPS) as follows;

∀S ∈ L, S ∈ S(n),

A number of element ofL is
(n − 1)(n − 2)

2
,

{Csum(S ,C) | S ∈ L} are linearly independent.

We need to observe (n−1)(n−2)/2 linearly independent
pairings. Indeed, there are multiple LIPS in conducting
these observations. However, what should be remarked is
that we have to derive all compatibilities in the system after
(n − 1)(n − 2)/2 observations are completed.

Here, an inverse matrix of the size O(n2) × O(n2) al-
lows deriving all compatibility from the observed values
of LIPS. However, it is too computationally intense or time
consuming.

Therefore, the idea of the present study is to pick up a
particular type of LIPS, by which the representation matrix
from LIPS to compatibility is analytically solved. We call
such a LISP by Stairs-LIPS. Again, no matrix inversion is
necessary via Stairs-LIPS.

3.3. Proposed Observation Algorithm: Stairs-LIPS

The proposed method focuses on an upper triangular ma-
trix with the the diagonal elements being zero. Further, let
the columns 2k−1 and 2k of this matrix be called the group
Gk for k ≥ 1. That is:

k ≥ 2,Gk ≡ {{i, j} ∈ P(n) | i < j, i ∈ {2k − 1, 2k}} .

Here, we denote following values and sets:

k ≥ 2, xk ≡ C2k−1,2k,

V ≡
{
{2i − 1, 2i} ∈ P(n) | 1 ≤ i ≤

n
2

}
.
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Figure 1: The compatibility matrix C̃ is divided into multi-
ple regions Gk.

Some definition are depicted in Fig.1. Then, we define fol-
lowing mapping e as follows;

p1 ⊂ S ∈ S(n),⋃
p1 =

⋃
p2,

e(S , p1, p2) ≡ (S \ p1) ∪ p2.

With using mapping e, we define pairing S i, j (2 ≤ i < j ≤
n) as follows;

d1,1(i, j) = {{1, 2}, { j, pair( j)}},
d1,2(i, j) = {{2, j}, {1, pair( j)}},
d2,1(i, j) =

{
{3, 4}, {i, pair(i)}

}
,

d2,2(i, j) =
{
{3, i}, {4, pair(i)}

}
,

d3,1(i, j) =
{
{1, 2}, {i, pair(i)}, { j, pair( j)}

}
,

d3,2(i, j) =
{
{1, pair( j)}, {2, pair(i)}, {i, j}

}
,

S i, j =


V, if {i, j} = {3, 4},
e(S 3,4, d1,1(i, j), d1,2(i, j)), if i = 2,
e(S 3,4, d2,1(i, j), d2,2(i, j)), if i ≥ 5 ∩ {i, j} ∈ V,
e(S 3,4, d3,1(i, j), d3,2(i, j)), otherwise.

Here, we define {i, pair(i)} ∈ V. Then, the following lem-
mas hold:

Lemma 1. When {i, j} ∈ Gk \ V and 2 < i < j ≤ n, the
following equation holds;

C̃i, j =

(
x 1+i+pair(i)

2
+ xk

)
− C̃2,pair(i)

+Csum(S i, j, C̃) −Csum(S 3,4, C̃). (3)

Proof. By calculating the difference between Csum(S 3,4, C̃)
and Csum(S i, j, C̃);

Csum(S i, j, C̃) −Csum(S 3,4, C̃)
= (C̃1,pair( j) + C̃2,pair(i) + C̃i, j)
−(C̃1,2 + C̃i,pair(i) + C̃ j,pair( j))

= (C̃2,pair(i) + C̃i, j) −
(
x 1+i+pair(i)

2
+ xk

)
. (4)

Then, the lemma 1 holds. □

Lemma 2. When {2, j} ∈ Gk and 2 < j ≤ n, the following
equation holds;

C̃2, j = xk +Csum(S 2, j, C̃) −Csum(S 3,4, C̃). (5)

Proof. By calculating the difference between Csum(S 3,4, C̃)
and Csum(S 2, j, C̃);

Csum(S 3,4, C̃) −Csum(S 2, j, C̃)
= (C̃1,2 + C̃ j,pair( j)) − (C̃2, j + C̃1,pair( j))
= C̃ j,pair( j) − C̃2, j

= xk − C̃2, j. (6)

Then, the lemma 2 holds. □

Lemma 3. When {i, j} ∈ Gk \ V and 2 < i < j ≤ n,
following equation holds;

C̃i, j = xk −Csum(S 2,pair(i), C̃) +Csum(S i, j, C̃). (7)

Proof. By lemma 2, following equation holds;

C̃2,pair(i)

= x 1+i+pair(i)
2
+Csum(S 2,pair(i), C̃) −Csum(S 3,4, C̃). (8)

By Eqs. (3) and (8), the lemma 3 holds. □

Lemma 4. When k ≥ 3, following equation holds;

xk

= x2 +Csum(S 2,3, C̃) +Csum(S 2,4, C̃)
−Csum(S 3,4, C̃) +Csum(S 2k−1,2k, C̃)
−Csum(S 3,2k−1, C̃) −Csum(S 4,2k, C̃). (9)

Proof. By calculating the difference between Csum(S 3,4, C̃)
and Csum(S 2k−1,2k, C̃);

Csum(S 3,4, C̃) −Csum(S 2k−1,2k, C̃)
= (xk + x2) − (C̃3,2k−1 + C̃4,2k). (10)

Also, by the lemma 3, the following equation holds;

C̃3,2k−1

= xk −Csum(S 2,4, C̃) +Csum(S 3,2k−1, C̃), (11)
C̃4,2k

= xk −Csum(S 2,3, C̃) +Csum(S 4,2k, C̃). (12)

By Eqs. (10), (11), and (12), the lemma 4 holds. □

Lemma 5.

x2

=
2

n − 2

Csum(S 3,4, C̃) −
∑
k≥3

bk

 − n − 4
n − 2

a, (13)

a ≡ Csum(S 2,3, C̃) +Csum(S 2,4, C̃)
−Csum(S 3,4, C̃), (14)
bk ≡ Csum(S 2k−1,2k, C̃) −Csum(S 3,2k−1, C̃)
−Csum(S 4,2k, C̃). (15)
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Proof. By calculation of Csum(S 3,4, C̃) with the lemma 4;

Csum(S 3,4, C̃)

=

(n
2
− 1
)

x2 +

(n
2
− 2
)

a +
∑
k≥3

bk. (16)

By this equation, lemma 5 holds. □

Theorem 1. All compatibilities can be represented by lin-
ear combination of {S i, j | 2 ≤ i < j ≤ n}.

Proof. With lemmas 2, 3, 4, and 5, all compatibilities can
be clearly represented by linear combination of {S i, j | 2 ≤
i < j ≤ n}. □

With Theorem 1, we can construct compatibility matrix
C̃ by observing only the Stairs-LIPS. Here, the number of
Stairs-LIPS is (n − 1)(n − 2)/2, which is equal to the nec-
essary and sufficient number of observations. Therefore,
Stairs-LIPS satisfies the conditions of the LIPS we look for.
That is, it provides the minimum number of observations
and yields all compatibiity information without matrix in-
version calculations.

4. Conclusion

This study proposed an algorithm that achieves the min-
imum number of observations for the observation phase
in pairing optimization. Although the previous study un-
veils that the minimum number of observations required
to recover the information of the compatibility matrix is
(n − 1)(n − 2)/2, how to achieve such efficient observation
has not been known. In this study, we define the linearly
independent pairings, called LIPS, for the class that allows
the minimum number of observations. However, not all
LIPS is actually efficient because a complex calculation of
an inverse matrix is usually inevitable to derive the com-
patibility matrix from LIPS. Therefore, we propose Stairs-
LIPS, which is a special case of LIPS, by which the trans-
formation to compatibility matrix is obtained by a simple
analytical formula, without involving inverse matrix com-
putation. Here, Stairs-LIPS yields a compatibility matrix
C̃ with the constraint that C̃i, j = 0, (1 ∈ {i, j}). The ex-
plicit formula can express the representation matrix of the
transformation. Therefore, Stairs-LIPS can compute the
compatibility matrix C̃ from the observed values with small
computational complexity, even for large n. This research
is expected to improve the efficiency of pairing optimiza-
tion and may have future applications in communication
systems that require fast pairing.

References

[1] M. Aldababsa, M. Toka, S. Gökçeli, G. K. Kurt, and
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