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Abstract—We consider the synchronized states in a
coupled square wave oscillators. First, we briefly show the
behavior of the coupled square wave oscillators, and a hy-
brid return map can be realized by using the exact solution.
Next, we make the return map the simplified it for the sym-
metrical property. From investigation of bifurcation dia-
gram, we conclude that Saddle-Node and Border-Collision
bifurcation influence the synchronization in these oscilla-
tors.

1. Introduction

The rhythmic motions have been analyzed by many
scholars from a long time ago. One example of these is
PET-bottle oscillator [1]. It is coupled two PET-bottles
and observed the synchronized states between the down-
flow of water and the upflow of air [2]. M. Kohira et al.
applied the PET-bottle oscillators and proposed the model
equations by a coupled square wave oscillators [3]. These
oscillators coupled by a resistor synchronize in the mode
of in-phase. Their dynamics are described by four linear
differential equations whose parameters are switched with
threshold values. Recently, we also analyzed the oscilla-
tors coupled by a resistor, the cause of the synchronization
in these oscillators was clarified [4]. On the other hand, the
oscillators coupled by a capacitor synchronize in the mode
of anti-phase. However, the coupled square wave oscilla-
tors by using a capacitor have not been established.

In this paper, we consider the synchronization in the
square wave oscillators which are coupled by the capaci-
tor. First, the exact solution is derived from the differen-
tial equations. Because of this, we can construct the re-
turn map. Next, we try to simplify the return map, because
there is the symmetrical property in the trajectory of this
system. Also, we show the return map of the synchroniza-
tion, it is proven that these oscillators synchronize at anti-
phase. Moreover, we define the switching rate γ for various
periodic and non-periodic trajectories by using the output
pulses. Finally, we conclude that the Saddle-Node bifur-
cation and the Border-Collision bifurcation play an impor-
tant role from investigation of one-parameter bifurcation
diagram. Our method can be applied to the system which
dynamics is described by four linear differential equations
whose parameters are switched with threshold values.

2. Square Wave Oscillators Coupled by a Capacitor

Fig. 1shows the square wave oscillators coupled by a
capacitor [3]. These oscillators are described as

dv1

dτ
=

1
1 + 2δ

{−(1 + δ)v1 − δv2 + (1 + δ)e1 + δe2} ,
dv2

dτ
=

1
1 + 2δ

{−δv1 − (1 + δ) + δe1 + (1 + δ)e2} ,
(1)

v+1 = αv01, v+2 = βv02,

v01 = e sgn(v+1 − v1) = e sgn(αv01 − v1),
v02 = e sgn(v+2 − v2) = e sgn(βv02 − v2).

(2)
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Figure 1: The coupled square wave oscillators.
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Figure 2: An example of the wave form. (α = 0.406, β =
0.7, δ = 0.1)
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Figure 3: The phase portraits of some arbitrary parameters with β = 0.7, δ = 0.1. (a) α = 0.345, (b) α = 0.406, (c) =
α = 0.435, (d) α = 0.52, (e) α = 0.67 and (f) α = 0.7.

Equation (2) has the following relationship:

0 < α < 1, 0 < β < 1. (3)

Figure 2 shows an example of the wave form and Figs. 3
show the phase portraits with various values of α. Note that
Fig. 2 corresponds Fig. 3(b). Here, when we transform
and rescale for variables, Eq. (1) becomes the following
differential equations:


dx
dτ
+ x =

√
2(e1 + e2)

2
,

(1 + 2δ)
dy
dτ
+ y =

√
2(e1 − e2)

2
.

(4)

We define some objects as follows for the following anal-
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Figure 4: Some defined intervals.

ysis.

P11 ≡ {(x, y, e1, e2) | x ≥
√

2(β − α)
2

, y ≥ x −
√

2β,

e1 = −1, e2 = 1},

P12 ≡ {(x, y, e1, e2) | x ≤
√

2(β − α)
2

, y ≥ −x −
√

2α,

e1 = −1, e2 = 1},

P21 ≡ {(x, y, e1, e2) | x ≤ −
√

2(α + β)
2

, y ≤ x +
√

2β,

e1 = −1, e2 = −1},

P22 ≡ {(x, y, e1, e2) | x ≤ −
√

2(α + β)
2

, y ≥ −x −
√

2α,

e1 = −1, e2 = −1},

P31 ≡ {(x, y, e1, e2) | x ≤ −
√

2(β − α)
2

, y ≤ x +
√

2β,

e1 = 1, e2 = −1},

P32 ≡ {(x, y, e1, e2) | x ≥ −
√

2(β − α)
2

, y ≤ −x +
√

2α,

e1 = 1, e2 = −1},

P41 ≡ {(x, y, e1, e2) | x ≤
√

2(α + β)
2

, y ≤ −x +
√

2α,

e1 = 1, e2 = 1},

P42 ≡ {(x, y, e1, e2) | x ≤
√

2(α + β)
2

, y ≥ x −
√

2β,

e1 = 1, e2 = 1},

(5)

 P1 ≡ P11 ∩ P12, P2 ≡ P21 ∩ P22,

P3 ≡ P31 ∩ P32, P4 ≡ P41 ∩ P42.
(6)

Equation (4) defines four linear differential equations on

- 350 -



four half planes which are controlled by the output voltage
of the operational amplifier with Eq. (6). In the following,
we analyze Eq. (4) as the hybrid dynamical systems which
are defined by these planes.

3. Return Map

The solution of the coupled square wave oscillators can
be calculated analytically because Eq. (4) is a piecewise
linear autonomous system. Therefore, we obtain a return
map explicitly. Here, we show some intervals: I10, I20,
I30, I40, I11, I21, I31, I41 (See Fig. 4). So, the following
mappings are defined:

f1 : (I10 ∪ I20) → (I21 ∪ I31),
f2 : (I11 ∪ I21) → (I10 ∪ I40),
f3 : (I30 ∪ I40) → (I11 ∪ I41),
f4 : (I31 ∪ I41) → (I20 ∪ I30).

(7)

Additionally, we define as follows:

ψ : f → S 1, (x, y)→ X′, (8)

where

X′ =


(α + β) +

√
2x

2(α + β)
, x ∈ I10, I20, I11, I41,

3(α + β) −
√

2x
2(α + β)

, x ∈ I30, I40, I21, I31.

(9)

The following return map G can be defined by using Eq.
(8).

G ≡ ψ fψ−1 : S 1 → S 1,
S 1 = {X′ ∈ R mod 2}. (10)

Thus, the dynamics of Eq. (4) can be interpreted as behav-
ior of a discrete map written by:

X′n+1 = G(X′n). (11)

Now x is described by Eq. (9).

x =


√

2(α + β)
(
X′ − 1

2

)
, x ∈ I10, I20, I11, I41,

−
√

2(α + β)
(
X′ − 3

2

)
, x ∈ I30, I40, I21, I31.

(12)
Figure 5 shows an example of G which corresponds to the
parameters used in Fig. 3(b).

Next, we simplify the return map because the trajectory
of this system has the symmetrical property [5]. For the
simplification, we define the following:

Yn ≡ e1(n)e2(n), (Yn = 1 or −1), (13)

X =

 X′, x ∈ I10, I20, I11, I41,

X′ − 1, x ∈ I30, I40I21, I31.
(14)

Finally, we can define the simplified return map as follows:

F ≡ ψ fψ−1 : S 1 → S 1,
S 1 = {X ∈ R mod 1}. (15)

Here, we assume that a point Xp is called n-periodic
point of F such that

Fn(Xp) = Xp, Fk(Xp) , Xp (k < n). (16)

4. Analysis

Theorem 1: F has no fixed point.
Proof: The following transitions have to be considered.

case1: I10 → I21 → I10 case2: I20 → I31 → I20
case3: I30 → I41 → I30 case4: I40 → I11 → I40
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Figure 5: An example of the return map. (α = 0.406, β =
0.7, δ = 0.1)
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Figure 6: A return map of the synchronized states. (α =
0.7, β = 0.7, δ = 0.1)
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In this paper, we show only case1. Let x0 be initial point
on I10. x0 is transformed to a point x1 ∈ I21 and x1 is trans-
formed to a point x2 ∈ I10. Because of x0 < x1 < x2, F has
no fixed point. Analogous manner is possible for the other
cases.
Theorem 2: We assume α = β, the coupled square wave
oscillators synchronize in the mode of anti-phase.
Proof: When an initial point is located in X0 < 0.5 or
X0 > 0.5, it is possible in the following cases (δ > 0).

lim
n→∞

F2n(X0)→ 0.5. (17)

It means that the stable fixed point has X = 0.5. That is
to say, the coupled square wave oscillators synchronize at
anti-phase (See Fig. 6).

Next, we analyze the coupled square wave oscillators
with different parameter (α , β). For characterizing the pe-
riodic trajectory, we show switching rate γ.Following prop-
erties are known [6].

1. γ exists and depends on the initial point X.

2. γ is rational if F has a stable periodic trajectory.

Property1: If γ = n/m, the switch of the output of the op-
erational amplifier has m+n switching. F has m+n periodic
point and m + n denotes the number of line segmentations
of a trajectory on v1-v2 plane.
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Figure 7: α − γ characteristic. Fn(x), n = 4000, is used for
the calculation of γ. (β = 0.7, δ = 0.2)
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Figure 8: One-parameter bifurcation diagram when β =
0.7, δ = 0.2.

Property2: If β < α, γ is larger than 1, and if α < β, γ
is smaller than 1. In some cases, if γ is irrational, F has a
periodic trajectory. Figure 7 shows the graph of the switch-
ing rate. This figure means that Eq. (4) has many periodic
trajectories.

Finally, we analyze the bifurcation phenomena when
γ = 2/6. Figure 8 shows 4-periodic and non-periodic so-
lution. In this figure, S N corresponds to bifurcation point
of Saddle-Node bifurcation and BC corresponds to bifur-
cation point of Border-Collision bifurcation. Here, Border-
Collision bifurcation is bifurcation phenomena when the
trajectory exceed the border. We conclude that Saddle-
Node bifurcation and Border-Collision bifurcation essen-
tially influence the synchronization of the coupled square
wave oscillators.

5. Conclusions

We have analyzed the synchronized states in the coupled
square wave oscillators. The systems are described by four
linear differential equations, so that we have derived the re-
turn map explicitly. Furthermore the return map has been
simplified for the symmetrical property. We also have dis-
cussed the bifurcation phenomena only when γ = 2/6. De-
tailed bifurcation analysis is the future works.
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