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Abstract—In this paper, we study the bifurcation and bifurcation 
control of a single-gene expression model mediated by small 
RNAs (sRNAs) with two delays. We first show the effect of 
sRNAs on the stability and bifurcation of the single-gene 
expression model. Then we control the Hopf bifurcation by using 
a hybrid control strategy. Under the control, the onset of the 
critical value of the undesirable Hopf bifurcation is postponed, 
and thus the model can remain stable for a larger delay. Finally, 
we verify the correctness of the theoretical results through the 
numerical simulations. 
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I.  INTRODUCTION 
As we know, the studies on genetic regulatory networks not 

only involve a discussion of stability properties [1]–[3], but 
also involve other dynamic behaviors, such as periodic 
oscillatory behaviors [4], chaos and bifurcation [5]–[7]. The 
bifurcations, which involve the emergence of oscillatory 
behaviors, may provide an explanation for the parameter 
sensitivity observed in practice in many realistic genetic 
regulatory networks. On the other hand, if we understand more 
about the bifurcation behaviors of genetic regulatory networks, 
we can apply the bifurcation control methods to achieve some 
desirable behaviors that benefit the networks. Thus, the study 
of bifurcations on genetic regulatory networks is quite 
important. 

In general, bifurcation control refers to the control of 
bifurcation properties of nonlinear dynamic systems, thereby 
resulting in some desired output behaviors of the systems, 
such as delaying the onset of an inherent bifurcation, 
stabilizing an unstable bifurcated solution or branch, and 
changing the critical values of an existing bifurcation [8]. 
Various bifurcation control approaches have been proposed in 
the literature [9]–[13]. Particularly, for the problem of 
relocating an inherent Hopf bifurcation, a dynamic state 
feedback control law incorporating a washout filter was 
proposed [9]. Later, the state feedback scheme was 
successfully developed to control Hopf bifurcations of 
autonomous systems [10], [11]. It should be noted that the 
state feedback scheme was first proposed to realize the control 
of the Hopf bifurcation for time-delayed systems [13], [14]. 
However, much less is known in the case of applying the 

hybrid to control bifurcations arising from time-delayed 
systems.    

To motivate our present study in this area, we recall that the 
gene regulation process in cells is governed not only by 
mRNAs and proteins, but also by small RNA (sRNA) 
molecules [18], [22]. There has been considerable 
experimental evidence that sRNAs can play a major role in 
gene regulation processes [17], [24]. The sRNAs are 
transcripts of an organism’s genome, similar to the mRNAs 
that encode proteins. Unlike mRNAs, however, the main 
function of sRNAs is to regulate the expression of other genes, 
which they accomplish by binding to target mRNAs or by 
interacting with proteins. The sRNAs act as guides to direct 
mRNAs degradation, translational repression, hetero-
chromatin formation and DNA elimination [16], [20]. It would 
be logical to suppose that the sRNAs in gene regulatory 
networks could have a significant impact on network 
dynamics. 

To our knowledge, the first gene regulatory model mediated 
by sRNAs was proposed by Shen et al. [15]. They derived the 
theoretical results of the globally asymptotic stability and 
provided the sufficient conditions for the oscillation. In this 
paper, we illustrate the effect of sRNAs on the gene regulation 
by a comparison analysis of the dynamics between a single-
gene regulatory network without and with sRNAs firstly. Then 
a new method is presented to control the Hopf  bifurcation of a 
delayed single-gene expression model. Finally, through the 
numerical simulations we verify the correctness of the 
theoretical results. 

II. SINGLE-GENE EXPRESSION MODEL WITHOUT OR WITH 
SRNAS 

In this section, we introduce a single-gene regulatory 
network without or with sRNAs. This network is an important 
class of genetic regulatory networks. Its mathematical model 
has been derived and has been experimentally and/or 
theoretically investigated in [15], [19]. Then we give the effect 
of sRNAs on the stability and Hopf bifurcation of the single-
gene regulatory network model. 

SINGLE-GENE EXPRESSION MODEL WITHOUT SRNAS 
Lewis [19] has proposed a single-gene regulatory network 

model with time delays described by the following equations 
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where and ( )p t  are the concentrations of the mRNA and 
protein, respectively, 0a >  and 0b >  are the degradation 
rates of the mRNA and protein, respectively, and 0a >  is the 
synthesis rate of the protein. Then a significant time, 1t  
elapses between the initiation of transcription and the arrival 
of the mature mRNA molecule in the cytoplasm. Likewise, 
there is a delay, 2t  between the initiation of translation and 
the emergence of a complete functional protein molecule. In 
addition, ( ( ))g p t t-  is the rate of the production of the 
mRNA, and ( )g x   is a function in the Hill form as follows: 
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where the Hill coefficient representing the degree of 
cooperation is ( 0)n n > , and 0, pb  are positive constants. It is 
shown in [19] that model (2.1) can exhibit Hopf bifurcations 
as the sum of delays passes through some critical values. 

SINGLE-GENE EXPRESSION MODEL WITH SRNAS 
The sRNAs are often shown to act as inhibitors of the 

translation by base pairing with mRNAs in the ribosome 
binding site [17]. Shen et al. [15] incorporated the sRNA into 
the single-gene network (2.1) to study the regulatory effects of 
the sRNA. The corresponding differential equation model is 
described as follows 
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where ( )m t , ( )s t  and ( )p t  are the concentrations of the 
mRNA, sRNA and protein, respectively, 0c > , 0f >  and 

0b >  are the degradation rates of the mRNA, sRNA and 
protein, respectively, 0a >  is the synthesis rate of the protein, 

0e >   is the transcription rate of the sRNA, 0d >   is the rate 
of the sRNA pairing with the mRNA and ( )g x  is the sigmoid 
function or the function of the Hill form. In network (2.2), 

( )s t , ( )m t  represents the effect of base pairing between ( )s t  
and ( )m t . Shen et al. [15] have proved that there are periodic 
solutions for model (2.2) when the total delay 1 2t t t= +  
exceeds the critical value 0t  and the gene oscillation is also 
robust in the model. 

THE EFFECT OF SRNAS ON THE STABILITY AND HOPF 
BIFURCATION OF THE SINGLE-GENE EXPRESSION MODEL 

In this subsection, the comparison of the stability between 
network (2.1) without sRNAs and network (2.2) with sRNAs 

is given by some numerical examples, and the effect of sRNAs 
on the stability of the single-gene regulatory network model is 
shown. 

In [19], Lewis took the biologically meaningful values of 
parameters in network (2.1) without sRNAs as 4.5,a =  

0.23,b c= =  and ( )
2

2 2
33 40 .

40
g x

x
´

=
+

 He estimated the values 

of the total delay 1 2t t t= +  and the period of the oscillation 
which are far from the results observed in a real-life zebra fish. 
In [23], under this group of data, Wu accurately predicted 

7.55t =  min. It can be seen from Theorem 4.3 in [23] that the 
equilibrium ( ) ( )* *, 8.27,  161.76m p =  of network (2.1) is 

asymptotically stable when 0t t<  (see Fig. 2.1). On the other 
hand, as t  passes through the critical value 0 7.55t =  min, 
the equilibrium loses its stability and a Hopf bifurcation 
occurs, i.e. a periodic oscillation bifurcates from the 
equilibrium (see Fig. 2.2). 

For a consistent comparison, we consider the special case of 
network (2.2) with sRNAs: 4.5,a =  0.23,b c= =  and 

( )
2

2 2
33 40 ,

40
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=
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   1,e =    0.1d = and   0.2f = , where the 

values of parameters , , ,a b c  and ( )g x  are same as those of 
network (2.1) without sRNAs used in [19], [23]. It follows 
from Equation (2.10) in [15] that 4.965t =  min. Note that the 
equilibrium ( ) ( ), 7.23,  1.08,  141.3, 9m s p* * * =  of network 
(2.2) is different as that of network (2.1), and the critical value 

0t  for network (2.2) decreases from 7.55 min to 4.965 min, 
implying that the onset of the Hopf bifurcation is advanced. 

Under these values of parameters, we choose 4.8t =  min 
0 .t<  According to Theorem 1 in [15],  trajectories of network 

(2) converge to the equilibrium ( ), ,m s p* * * , as shown in Fig. 
2.3. 

Under these values of parameters, we choose 5.2t =  min 
0t> , which is the same value as that used in Fig. 2.1. From 

Theorem 1 in [15], we conclude that instead of having a stable 
equilibrium, the equilibrium of network (2.2) becomes 
unstable and a Hopf bifurcation occurs, as shown in Fig. 2.4. 

 
Fig. 2.1 Phase portrait of system (2.1). The equilibrium point ( )* *,m p  is 
asymptotically stable, where 1 2 01.5 4 5.5 7.55.t t t t= + = + = < =  
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Fig. 2.2. Phase portrait of system (2.1). The equilibrium point ( )* *,m p  is 

unstable, where 1 2 01.5 6.2 7.7 7.55.t t t t= + = + = > =   

 
Fig. 2.3 Phase portrait of system (2.2). The equilibrium point ( )* * *,,m s p  is 

asymptotically stable, where 1 2 01.5 3 4.5 4.965.t t t t= + = + = < =  

 
Fig. 2.4. Phase portrait of system (2.2). The equilibrium point ( )* * *,,m s p  is 

unstable, where 1 2 01.5 4 5.5 4.965.t t t t= + = + = > =  

III. HOPF BIFURCATION CONTROL OF SINGLE-GENE 
EXPRESSION MODEL WITH SRNAS AND TWO DELAYS VIA 

HYBRID 
In this section, we design a hybrid law to the original single-

gene system (2.2) for controlling the Hopf bifurcation. 

It is well known that time delays cannot change the number 
and location of equilibriums of system (2). Let ( )* * *,,m s p  be 
the equilibrium of (2.2), which is the solution of the following 
equation 
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The controlled system will be assumed as the follows 
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where the feedback gain parameter a  is negative.  

Remark 3.1: The hybrid controller can keep the equilibrium 
( ), ,m s p* * *  of system (2.2) unchanged. Thus, the bifurcation 
control can be realized without destroying the properties of the 
original system  (2.2). 

Remark 3.2: The hybrid scheme has been successfully used 
to control the Hopf bifurcation in various autonomous systems. 
However, we first apply this scheme to the time-delayed 
genetic regulatory network. 

We can get j
kt  after we linearize system (3.1) 
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The method of calculation is same as [15]. 

Theorem 1: For (3.1), the following results hold. 
(i) System (3.1) is stable when 0(0, )t tÎ  and it is unstable 

when 0.t t>  

(ii) System (3.1) undergoes a Hopf bifurcation at the 
equilibrium when 0t t= . 

IV. NUMERICAL SIMULATION 
Now we illustrate the effectiveness of the state feedback 

control strategy through the numerical simulation. We  put 
into the same parameters as [21] 

4.5, 0.23, 0.1, 1, 0.2,a b c d e f= = = = = =  ( )
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then system (3.1) is 
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where the equilibrium point ( )* * *,,m s p  of the system (3.1) is 

( )7.23,1.08,141.39 .   

- 580 -



 
 

When 0a = , system (4.1) is the non-controlled system  
(2.2). From [21], we can get 0 00.278, 4.965w t= = . When 

[ )0, 4.965t Î , the equilibrium point ( )* * *,,m s p  is 
asymptotically stable. When 4.965t >  , the equilibrium point 
( )* * *,,m s p  becomes unstable, and the Hopf bifurcation 
appears (see Fig. 3.1).  

Now, we choose an appropriate  to control the bifurcation. 
We take 0.1.a = - We can get 0 00.256, 5.967w t= = . The 
controlled system (4.1) has the same equilibrium point as that 
of the non-controlled system (2.2), but the critical value 0t  
has increased from 4.965 to 5.967,  which means that the onset 
of the bifurcation is delayed. Under the state feedback control 
with 0.1a = - , we take 1 2 03.5 1.5 5.967t s s t= + = + < = , 
which is the same value as that used in Fig. 3.1. We can see 
the equilibrium ( )* * *,,m s p  of the controlled model  (4.1) is 
stable, as shown in Fig. 3.2.    

 
Fig. 3.1. Phase portrait of the non-controlled system (2.2) with 0a =  . The 
equilibrium point ( )* * *,,m s p   is unstable, where 

1 2 03.5 1.5 5 4.965.t t t t= + = + = > =   

 
Fig. 3.2. Phase portrait of the controlled system (3.13) with 0.1a = - . The 
equilibrium point ( )* * *,,m s p  is asymptotically stable, where 

1 2 03.5 1.5 5 5.976.t t t t= + = + = < =  
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