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An efficient PCA based method for Tucker3 model
selection

Zhaoshui He, Andrzej Cichocki, Senior Member, IEEE

Abstract—There has been a growing interest in Tucker3 anal-
ysis recently. One of the biggest challenges in Tucker3 analysis
is the model selection problem: how to choose the number of
components in each mode of an observed tensor. An alternative
Tucker3 model selection approach is developed based on principal
component analysis (PCA) for this problem in this paper. It is
computationally efficient and straightforward to implement. Its
effectiveness is demonstrated by the experiments.

Index Terms—Tucker3 decomposition, model selection, princi-
pal component analysis (PCA)

I. INTRODUCTION

TUCKER3 analysis arises in many applications, including
chemonetrics [1]–[3], signal processing [4]–[6], telecom-

munication [7], image processing [8], etc. Given an observed
tensor Y ∈ RI×J×K , its Tucker3 approximation can be
formulated as

yijk =
P∑

p=1

Q∑
q=1

R∑
r=1

= gpqraipbjqckr + eijk, (1)

where i = 1, · · · , I , j = 1, · · · , J and k = 1, · · · ,K (P < I ,
Q < J and R < K), or in a matrix form as

Y = G×1 A×2 B ×3 C + E, (2)

where ×A, ×B and ×C denote the mA-mode product, mB-
mode product and mC-mode product, respectively [9]. The
core tensor G ∈ RP×Q×R, the noise/error tensor E ∈
RI×J×K and the factor A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R

are unknown. The objective is to choose the number (P, Q, R)
of components of tensor Y [10], [11].

There have been many methods to Tucker3 model selection.
Roughly speaking, these methods can be categorized into
two groups: the Tucker fitting based methods and the PCA
based methods. The Tucker fitting based methods choose the
parameters (P, Q, R) by computing the Tucker fit values for
the Tucker3 model (1) for all possible P = 1, · · · , I , Q =
1, · · · , J and R = 1, · · · , K (e.g., Timmerman and Kiers’s
DIFFIT method [10]–[12]). Due to the repeated Tucker3 fitting
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computations involved, the Tucker fitting based methods are
expensive computationally so that it is usually suitable for
small scale problems. The PCA based methods first unfolds
the observed tensor Y to the large matrices in an appropriate
way and then separately chooses the number of components
via PCA for each mode. The typical PCA based methods in-
clude Cattell’s “scree-test” [13], Bartlett’s chi-square test [14],
Niesing’s QDA method [15], etc.

Since the PCA based methods do not need any Tucker3
decompositions, they can rapidly choose the number of com-
ponents even for some middle scale problems. For this reason,
although the Tucker fitting based methods are more precise,
the PCA based methods are often used in practice. In this
paper, we further discuss Tucker3 model selection under
separate PCA based framework and develop more reliable
method for Tucker3 model selection.

II. THE SEPARATE PCAS BASED TUCKER3 MODEL
SELECTION

The tensor Y can be unfolded into a matrix in different
ways. Here we particularly consider a special matricization
Y ∈ RI×JKgiven by

(Y )i,j+(k−1)K = (Y )i,j,k = yi,j,k, (3)

where i = 1, · · · , I , j = 1, · · · , J and k = 1, · · · ,K. The
unfolded matrix Y is shown in (4). From [16], [17], we have

Y = A ·G · (CT ⊗BT ) + E, (5)

where the operator ⊗ is the Kronecker product, the matrices
G ∈ RP×QR and E ∈ RI×JK are analogously unfolded from
the tensors G and E, respectively. The expression (5) can be
re-written as

Y = A ·X + E, (6)

where X = G · (CT ⊗ BT ) ∈ RP×JK . Note that (6) is
separable in column, i.e.,

yt = A · xt + et, t = 1, · · · , JK. (7)

A. Noisy PCA

Consider a noisy PCA model:

y = A · x + e, (8)

where the source vector x = (x1, · · · , xP )T , the noise vector
e = (e1, · · · , eI)T . Let’s make the following assumptions:

1) The noise components e1, · · · , eI are mutually indepen-
dent and identically distributed to N(0, σ2);
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Y =




y1,1,1 y1,2,1 · · · y1,J,1

y2,1,1 y2,2,1 · · · y2,J,1

...
...

. . .
...

yI,1,1 yI,2,1 · · · yI,J,1︸ ︷︷ ︸
I×J

y1,1,2 y1,2,2 · · · y1,J,2

y2,1,2 y2,2,2 · · · y2,J,2

...
...

. . .
...

yI,1,2 yI,2,2 · · · yI,J,2︸ ︷︷ ︸
I×J

· · ·
· · ·
· · ·

y1,1,K y1,2,K · · · y1,J,K

y2,1,K y2,2,K · · · y2,J,K

...
...

. . .
...

yI,1,K yI,2,K · · · yI,J,K︸ ︷︷ ︸
I×J




. (4)

2) The noise components e1, · · · , eI are also statistically
independent to the source components x1, · · · , xP .

From above two assumptions, we have

V = cov(y, y) = A · cov(x, x) ·AT + σ2I, (9)

where I is an identity matrix. From (8), we have P = rank(A)
if the noise is free (i.e., e = 0). Apply eigenvalue decompo-
sition (EVD) on matrix V as

EVD(V ) = UΛUT , (10)

where Λ = diag(λ1, · · · , λI), λ1, · · · , λI are the eigenval-
ues and U is the corresponding eigenvector matrix. Since
rank(A) = P < I , we can obtain

λ1 ≥ λ2 ≥ · · · ≥ λP > λP+1 = · · · = λI = σ2. (11)

B. The existing PCA based methods for Tucker3 model selec-
tion

Starting from (11), a variety of PCA based methods have
been proposed to determine the number P of nonzero-
eigenvalue components in Tucker3 analysis (see [10]). For
instance, Tucker [18] suggested directly using the “scree-
test”. The scree-test plots the magnitude of eigenvalues in
a descending order against their ordinal numbers. Then it
discards the components according to the Kaiser criterion [10],
which is to retain only those components corresponding to the
eigenvalues greater than the mean eigenvalue.

The second method is based on Bartlett’s chi-square
test [10], [19], where the null hypothesis that the remaining
eigenvalues are equal is tested. Each eigenvalue, ordered from
the largest to the smallest, is excluded sequentially until the
null hypothesis is not rejected. Then the components related
to the excluded eigenvalues are retained.

The third alternative method uses the minimum average
partial rule (MAP) to choose the number of components [20],
[21], which employs a matrix of partial correlations between
the variables with components partialed out. The components
are partialed out sequentially, beginning with the component
explaining most of the variance, and each time the average of
the squared partial correlations is computed. The MAP method
chooses the number of components based on the property that
this average partial correlation usually first decreases, but then,
after reaching a minimum, it starts increasing again.

In addition, Niesing [15] proposed to solve this problem by
finding an appropriate value of p to maximize the following
quotient of differences in additional values (QDA)

QDA(p) =
λp − λp+1

λp+1 − λp+2
, (12)

subject to the Kaiser constraint λp > 1
P

∑P
p=1 λp.

Above four methods were compared by Monte Carlo studies
in [10], [15], [21]. It was reported that QDA performed better
than the other methods.

III. IMPROVED PCA BASED METHOD FOR TUCKER3
MODEL SELECTION

The QDA method works well in many situations. However,
it tends to underestimate the number of components. Consider
the following problem:

λ1 > λ2 = λ3 > · · · > λP > λP+1 = · · · = λI = σ2. (13)

The QDA method is likely to find the wrong estimation P̂ =
1 < P in this case. To avoid this problem, we propose a GAP
measure as follows:

GAP(p) =





var{λi}I−1
i=p+1

var{λi}I−1
i=p

, var{λi}I−1
i=p 6= 0

+∞, var{λi}I−1
i=p = 0

(14)

where p = 1, · · · , I − 2, var({λi}I−1
i=p ) denotes the sample

variance of the sequence {λi}I−1
i=p and λi = λi − λi+1, i =

1, · · · , I−1. We choose the number of mode-mA components
of tensor Y by the criterion:

P̂ = arg min
p=1,··· ,I−2

GAP(p). (15)

Only three continuous eigenvalues λp, λp+1, λp+2 are taken
into account in the QDA expression (12), which causes the
underestimation of the component number sometimes. In
contrast, all smaller eigenvalues from λp to λI are involved in
(14). In addition, the Kaiser constraint is removed in the GAP
method. It is easy to check that the GAP method can exactly
find P̂ = P in (13).

From above discussions, the GAP algorithm can be briefly
described as follows:

Choosing the number of components in mA-mode for
Tucker3 model (1)
P̂ = GAP(Y ,mA)

Step 1: Unfold the tensor Y to an I × JK matrix by (3).
Step 2: Compute the sample covariance matrix V̂ =
1

JK

∑JK
t=1 yty

T
t from (7).

Step 3: Compute the eigenvalue sequence {λi}I
i=1 of V̂

such that λ1 ≥ λ2 ≥ · · · ≥ λI .
Step 4: Compute the difference quotient GAPs:
GAP(p), p = 1, · · · , I − 2 by (14).
Step 5: Choose the number P̂ of components of mA-mode
by (15).- 456 -
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Step 6: output P̂ .

To choose the number Q of mB-mode components of tensor
Y , instead of tensor matricization (3), we can unfold Y to be
a J ×KI matrix arranged as

(Y )j,k+(i−1)I = (Y )i,j,k = yi,j,k, (16)

where i = 1, · · · , I , j = 1, · · · , J and k = 1, · · · ,K. Then
we obtain Q̂ = GAP(Y ,mB) in the same way as the selection
of P̂ . By analogy, we can choose the number R of mC-mode
components by R̂ = GAP(Y ,mC), where the corresponding
tensor matricization is

(Y )k,i+(j−1)J = (Y )i,j,k = yi,j,k, (17)

where i = 1, · · · , I , j = 1, · · · , J and k = 1, · · · ,K.

IV. EXPERIMENTAL EXAMPLES

In this section, we test the performance of the GAP method
and compare it with other methods. Since all methods can
rapidly find the results, we only compare their percentage of
correct selection in different noise levels.

Example 1: Consider a noisy Tucker3 example with the
following parameters: (I, J,K) = (32, 33, 34), (P, Q,R) =
(28, 29, 30). Totally 500 Monte Carlo trials were conducted.
In each Monte Carlo trial, the core tensor G and three
factor matrices A,B, C were randomly drawn from a uniform
distribution U [−0.5, 0.5]. Then we obtain the observations by
Y = G×1A×2B×3C+E in each Monte Carlo trial, where
E is the white Gaussian noise. The noise levels are shown in
Fig 1(a).

We respectively applied the MAP method [20]–[22], the
QDA method [15] and the GAP method on the tensor Y in
each Monte Carlo trial. The percentages of correct selection
were plotted in Fig 1(a), from which we can see that the MAP
method was sensitive to noise compared with the other two
methods, and the GAP method significantly outperformed the
QDA method when SNR<15dB.

Example 2: In this example, we consider the scenario where
the core tensor G is much smaller the observed tensor Y , i.e.,
(P, Q, R) ¿ (I, J,K). Both the core tensor G and the noise
tensor E as well as three matrices A, B, C were randomly
generated in the same manner as Example 1. The dimension of
Y is the same as Example 1, i.e., (I, J,K) = (32, 33, 34). The
difference is that here (P, Q, R) = (2, 3, 4) ¿ (I, J,K) =
(32, 33, 34). Similarly, 500 Monte Carlo trials were conducted.

Fig.1(b) plots the detailed results. It is shown that the
problem of Tucker3 model selection is relatively easy when
(P, Q, R) ¿ (I, J,K). For example, the GAP method suc-
ceeded in all Monte Carlo trials even in the very noisy cases
(e.g., SNR=-1dB).

V. CONCLUSIONS

The Tucker3 model selection has been discussed under the
PCA based framework in this paper. An improved PCA based
Tucker3 model selection algorithm has been developed. Since
it does not involve any complex Tucker3 decompositions at all
during the model selection, it is fast and easy to implement.
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Fig. 1. The percentage of correct selection versus the noise level (a)
(P, Q, R)=(28,29,30); (b) (P, Q, R)=(2,3,4).

In practice, it can play an important role in Tucker3 analysis
where the number of components is completely unknown. At
least, it can be used as a preprocessing/initialization tool to
detect the number of salient components in such applications.
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