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Abstract— Approximate Bayes computations are
used for parameter inference when the likelihood func-
tion is expensive to calculate but relatively cheap to
sample from. We present a new interacting particle
method for approximate Bayes computations. Unlike
other algorithms, it is not based on importance sam-
pling. Hence, it does not suffer from a loss of effective
sample size due to re-sampling.

1. Introduction

One way of doing parameter inference in the
Bayesian framework is to generate samples from the
posterior distribution

fpost(θθθ|y) =
f(y|θθθ)f(θθθ)

f(y)
, (1)

where f(θθθ) denotes the prior distribution encoding our
knowledge about the parameter vector θθθ before the ex-
periment and f(y|θθθ) is the likelihood function, that is,
the probability density of outputs given the parameter
vector θθθ, evaluated at the measurement vector y. Nu-
merical methods such as Metropolis-Hastings require
many evaluations of the likelihood function to generate
such a sample. However, for truly stochastic models,
the likelihood function is often prohibitively expensive
to calculate. Therefore, in recent years, algorithms
have been suggested that generate samples from (1)
and are based on sampling from the likelihood rather
than calculating it.

As far as we know, the origin of these algorithms
is to be found in population genetics. Pritchard et
al. [5] used an algorithm that generates samples from
the joint distribution f(θθθ)f(x|θθθ) and accepts the sim-
ulated θθθ only if x = y. For continuous outputs (or
output spaces of high cardinality), this equality con-
dition needs to be relaxed. Therefore, a metric, ρ,
on the output space was introduced and algorithms
were invented that sample from the probability distri-
bution proportional to f(θθθ)f(x|θθθ)χ(ρ(x,y) < ε), that
is, an approximate posterior. This is why these algo-
rithms are often called Approximate Bayes Computa-
tions (ABC). Marjoram et al. [4] used Markov chains
to produce samples from an approximate posterior.
Their algorithm combines a random walk in param-
eter space with drawing from the likelihood and an

acceptance/rejection step that accounts for the prior
and only accepts moves into an ε band around the tar-
get y. However, a small static tolerance leads to a
high rejection rate. Therefore, Beaumont et al. [1]
allowed for a decreasing sequence of tolerances and let
a population of particles of constant size N evolve to-
wards a good approximation of the posterior. Their
algorithm consists of an iteration of importance sam-
pling steps, that is, each iteration consists of drawing
a new population from the old one with weights and
subsequent re-weighting. This re-weighting leads to a
loss of effective sample size at each step and, further-
more, computational costs of the order O(N2). Their
algorithm also uses the empirical variances of the pop-
ulation to adapt the jump distribution in parameter
space.

In this short paper, we present a new population
method that is of the order O(N) and does not suf-
fer from a loss of effective sample size. The idea is
to run N parallel Markov chains that combine a ran-
dom walk in parameter space with drawing from the
likelihood and an acceptance/rejection step. Moves
are more likely to be accepted if they go into a region
of higher prior density and if they move closer to the
target y. This way, each chain produces samples from
the approximate posterior f(θθθ)f(x|θθθ) exp(−ρ(x,y)/ε).
Both the jump distribution in parameter space and the
tolerance ε are adapted using the empirical covariance
of the population in parameter space and its average
distance from the target, respectively. The adapta-
tions of the tolerance ε and the jump distribution in
parameter space render the underlying stochastic pro-
cess non-linear. However, these adaptations can be
interpreted as mean-field interactions between the par-
ticles of the population. Due to this fact, stability and
uniqueness of the limiting distribution can be proven
with a slight adaptation of the proof of the H-theorem
from statistical physics. Furthermore, the particles re-
main statistically independent, in the limit of an infi-
nite sample size.

For high dimensions, n, of the output space, the
tolerance ε that can be achieved in reasonable time
is limited. This deficiency is inherent to all ABC al-
gorithms simply because drawing an output from an
ε-ball around y scales like εn. Methods to reduce this
bias are investigated elsewhere (see, e.g., Leuenberger
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et al. [3]).
A convergence proof for the algorithm, case studies

as well as an estimate for the scaling behavior of the
bias with the dimension of the output space will be
presented elsewhere.

2. Algorithm

Our aim is to sample, in an efficient manner, from
the posterior distribution (1). Instead of sampling
directly from the posterior, like in the Metropolis-
Hastings algorithm, we may rewrite it as the marginal-
ization

fpost(θθθ|y) ∝
∫
f(x|θθθ)f(θθθ)δ(x− y)dx (2)

and sample from the joint distribution f(x|θθθ)f(θθθ)δ(x−
y) in the (θθθ,x)-space, Θ × Y . If the output space
has a high cardinality or is continuous, sampling from
f(x|θθθ)δ(x − y) becomes inefficient or impossible, re-
spectively. In these cases, we approximate the delta
function by a sequence of distributions on the output
space Y that are ever sharper peaked around the mea-
sured output y until a satisfactory level of precision is
reached. To this end, we choose a metric

ρ(·, ·) : Y × Y −→ R+
0 (3)

with the properties that

ρ(x,y) = 0 iff x = y ,

and ∫
exp(−ρ(x,y))dx <∞ .

We then have that

lim
ε↘0

∫
f(θθθ)f(x|θθθ)e−ρ(x,y)/εdx ∝ f(θθθ)f(y|θθθ) .

The aim is to propagate a population of particles
in Θ × Y that represents a sample from a time-
dependent distribution, W (θθθ,x; t), which converges
towards f(θθθ)f(x|θθθ) exp(−ρ(x,y)/ε), for a sufficiently
small tolerance ε. Therefore, each particle is propa-
gated according to the transition rate

t(θθθ,x|θθθ′,x′) = k(θθθ|θθθ′)f(x|θθθ)

×min
(

1, exp
(
ρ(x′,y)− ρ(x,y)

ε

))
×min

(
1,
f(θθθ)
f(θθθ′)

)
, (4)

where k(θθθ|θθθ′) is a symmetric transition rate in Θ. Al-
gorithmically, (4) is implemented composing a random
walk in parameter space with drawing from the likeli-
hood and an acceptance/rejection step to account for
prior and ε-tolerance.

The time-course of W (θθθ,x, t) is described by the
master equation

∂

∂t
W (θθθ,x, t) =

∫
(t(θθθ,x|θθθ′,x′)W (θθθ′,x′, t)

− t(θθθ′,x′|θθθ,x)W (θθθ,x, t))dθθθ′dx′ . (5)

It is easy to verify that

Weq(θθθ,x) ∝ f(θθθ)f(x|θθθ) exp
(
−ρ(x,y)

ε

)
(6)

represents a stationary solution of (5). Moreover, this
solution exhibits detailed balance

t(θθθ,x|θθθ′,x′)Weq(θθθ′,x′) = t(θθθ′,x′|θθθ,x)Weq(θθθ,x) , (7)

i.e., the integrand on the r.h.s. of (5) vanishes at sta-
tionarity. This is why Weq is also called an equilibrium
distribution (see [6], 6.4, for the terminology).

In order to improve the efficiency of the algorithm,
ε is replaced by a decreasing function ε(t) that is
adapted to the relaxation velocity of the population
towards equilibrium. If ε(t) decreaes much slower than
the relaxation velocity the algorithm is clearly ineffi-
cient; if it decreases much faster, too many particles
”get stuck” and the algorithm becomes inefficient as
well. At equilibrium, for the standard metric on Rn
and an ε that is so small that the variation of f(x|θθθ)
within an ε-ball around y can be neglected, ρ(x,y) is
approximately Γ-distributed with shape parameter n
and scale parameter ε. Hence, we have that

〈ρ(x,y)〉Weq
≈ nε .

Therefore, we use the average of ρ(x,y) over the pop-
ulation to adapt ε and replace ε in (4) by

εW =
1
β1n
〈ρ(x,y)〉W , (8)

where β1 may be interpreted as an inverse temperature
w.r.t. the output space.

We also adapt the jump distribution k(θθθ|θθθ′) to the
empirical covariance of the population. Therefore, we
replace k(θθθ|θθθ′) in (4) by

kW (θθθ|θθθ′) ∝ exp
(
−β2

2
(θθθ − θθθ′)T (ΣW + s1)−1(θθθ − θθθ′)

)
,

(9)
where ΣW denotes the covariance matrix of W and s is
a small scalar that prevents kW (θθθ|θθθ′) from degenerat-
ing. Furthermore, β2 may be interpreted as an inverse
temperature w.r.t. the parameter space.

Despite the non-linearities (8) and (9), the standard
H-theorem of master equations can be applied to prove
convergence (see, e.g., [2], for a proof of the H-theorem
in the linear case), as long as β1 is sufficiently large for
εW to be monotonously decreasing.

For convenience, we conclude with a description of
the algorithm in pseudo-code:
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1. Initialization of the algorithm:

(a) Draw initial population of particles, θθθ0,i, for
i = 1, . . . , N , from the prior.

(b) Draw an output, x0,i, for each particle, from
the likelihood f(x|θθθ0,i).

(c) Calculate ρ0,i = ρ(x0,i,y), for i = 1, . . . , N .

(d) Set iteration counter k = 0.

2. Iterate the following steps:

(a) Increment k.

(b) Adapt tolerance:

εk =
1

β1Nn

N∑
i=1

ρk−1,i .

(c) Adapt jump covariance:

Σk,ab =

1
β2(N − 1)

N∑
i=1

(θak−1,i−θ̄ak−1,i)(θ
b
k−1,i−θ̄bk−1,i)

+ sδab ,

where

θ̄ak−1,i =
1
N

N∑
i=1

θak−1,i .

For i = 1, . . . , N do the following steps

i. Draw proposal parameter vectors from
normal distributions

θθθ∗k,i ∼ N(θθθk−1,i,Σk) .

ii. Draw outputs, x∗k,i, from the likelihood
f(x|θθθ∗k,i).

iii. Calculate ρ∗k,i = ρ(x∗k,i,y).
iv. Draw random number, r, from uniform

distribution U [0, 1].
v. If

r < min
(

1, exp
(
ρk−1,i − ρ∗k,i

εk

))
×min

(
1,

f(θθθ∗k,i)
f(θθθk−1,i)

)
set θθθk,i = θθθ∗k,i, xk,i = x∗k,i and ρk,i =
ρ∗k,i. Otherwise, set θθθk,i = θθθk−1,i, xk,i =
xk−1,i and ρk,i = ρk−1,i.

References

[1] Beaumont M.A., Adaptive approximate Bayesian
computation, Biometrika 96, 4, 983-990, (2009).

[2] N.G. van Kampen, Stochastic processes in physics
and chemistry, 3rd ed. Amsterdam: Elsevier
2007.

[3] Leuenberger C., Wegmann D., Bayesian Compu-
tation and Model Selection Without Likelihoods,
Genetics 184, 243-252 (2010).

[4] Marjoram P., Molitor J., Plagnol V., Tavaré S.,
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