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Abstract—This paper investigates the global robust

stability problem for the complex-valued networks with

constant delay, where the system matrix parameters are

time-varying within the given intervals. Based on the Lya-

punov functional method and some properties of the norm

of matrices, sufficient criteria are presented to ascertain the

global stability of the uncertain networks. The activation

functions discussed here are no longer required to be

derivable. What is more, the results established depend

not only on the lower bound but also the upper bound

information of the uncertain matrices, whereas the existed

related criteria just utilize the lower bound information

of the uncertain self-feedback matrices. One numerical

example is also provided to illustrate the effectiveness of

the obtained results.

1. Introduction

In the past few years, due to the extensive applications

such as classification of signal processing, pattern recogni-

tion, and associative memory and so on, the recurrent net-

works have been widely studied, see [1, 2] for example. It

is well known that time delays often occur in signal trans-

mission among neurons in the electronic implementation

of networks, which would influence the dynamics of the

networks. Recently, dynamics of complex-valued neural

networks with time delays have been widely studied, see

[3, 4] and the references cited therein.

As is known to us, the activation functions play an im-

portant role in the dynamics of neural systems. Howev-

er, according to Liouville’s theorem, every bounded entire

function must be a constant function in the complex do-

main. Therefore, it is a big challenge to choose appropriate

activation functions for the complex-valued networks. Re-

cently, different kinds of complex-valued activation func-

tions have been proposed. It should be mentioned that in

[5], the derivatives of the activation functions are supposed

to exist and be continuous, however, in this paper, both the

real part and imaginary part of the activation functions are

no longer required to be derivable.

In practical implementation of neural systems, the val-

ues of the weight coefficients are subject to uncertainties.

Robust stability results could be seen in references [6, 7].

To the best knowledge of the authors, there are not enough

papers which are concerned about the robust stability of

uncertain complex-valued networks with delays. Motivat-

ed by the above discussions, the aim of this paper is to s-

tudy the robust stability of complex-valued recurrent neu-

ral networks with interval parameter uncertainties and time

delays.

2. Preliminaries

Consider the following complex-valued recurrent neural

networks with time delay as follows:

�
z(t) = −Cz(t) + A f (z(t)) + B f (z(t − τ)) + L, (1)

where z(t) = (z1(t), . . . , zn(t))T ∈ C
n is the state

vector of the neural networks with n neurons at

time t, C = diag{c1, · · · , cn} ∈ R
n×n with ck > 0

(k = 1, . . . , n) is the self-feedback connection weight

matrix, A = (ak j)n×n ∈ C
n×n and B = (bk j)n×n ∈ C

n×n are,

respectively, the connection weight matrix and the delayed

connection weight matrix. τ is the constant time delay

and L = (l1, . . . , ln)T ∈ C
n is the external input vector.

f (z(t)) = ( f1(z1(t)), . . . , fn(zn(t)))T : C
n → C

n denotes

the vector-valued activation function, which satisfies the

condition given bellow.

Assumption 1. Let z = z1 + iz2 with z1, z2 ∈ R.

fk(z) can be expressed by its real and imaginary parts with

fk(z) = f R
k (z1) + i f I

k (z2),

where k = 1, 2, · · · , n; f R
k (·), f I

k (·): R → R are bounded

and monotonically nondecreasing which satisfy the follow-

ing Lipschitz continuous condition

| f R
k (z1) − f R

k (̂z1)| ≤ rk |z1 − ẑ1|,
| f I

k (z2) − f I
k (̂z2)| ≤ sk |z2 − ẑ2|;

in which rk, sk are known constants, and z1, z2, ẑ1, ẑ2 are

any numbers in R.

With the above Assumption, if we denote z(t) = x(t) +
iy(t) with x(t), y(t) ∈ Rn, then the complex-valued recurrent

neural network (1) can be rewritten as follows:

�
v(t) = −C̃v(t) + Ãg(v(t)) + B̃g(v(t − τ)) + ζ, (2)

where g(v(t)) = (( f R(x(t)))T , ( f I(y(t)))T )T , v(t) =

(xT (t), yT (t))T , ζ = ((LR)T , (LI)T )T , C̃ = diag{C,C},

Ã =
(

AR −AI

AI AR

)
, B̃ =

(
BR −BI

BI BR

)
.
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It is well known that the bounded activation function-

s could always guarantee the existence of the equilibrium

points for system (2). Assume that v∗ = (v∗1, v
∗
2, . . . , v

∗
2n) is

an equilibrium point of (2). In order to simplify the proofs,

by setting u(t) = v(t) − v∗, system (2) can be transformed

into the following form:

�
u(t) = −C̃u(t) + Ãφ(u(t)) + B̃φ(u(t − τ)), (3)

where φ(u(t)) = g(u(t)+ v∗)−g(v∗). According to Assump-

tion 1, it is easy to know that the function φ(·) is monoton-

ically nondecreasing and

|φk(uk)| ≤ hk |uk |, ∀uk ∈ R, k = 1, 2, . . . , 2n (4)

where hk = rk (k = 1, 2, . . . , n) and hk = sk (k =
n + 1, n + 2, . . . , 2n).

Lemma 1.[8] For matrix E = (ek j)n×n ∈ [E, E], i.e.,

ek j ≤ ek j ≤ ek j with E = (ek j)n×n and E = (ek j)n×n, we have

‖E‖2 ≤ ‖E∗‖2+‖E∗‖2, where E∗ = (E+E)/2, E∗ = (E−E)/2
and ‖E‖2 is the induced 2-norm of matrix E.

3. Main results

In this section, by utilizing the Lyapunov functional

method and some inequalities analysis, we give, respec-

tively, the result for the deterministic networks and the

result for uncertain networks.

Theorem 1. Suppose that the Assumption 1 is sat-

isfied, then the complex-valued neural network (1) is

globally asymptotically stable if there exist two di-

agonal matrices P = diag{p1, p2, . . . , p2n} > 0 and

D = diag{d1, d2, . . . , d2n} > 0 such that

Ξ = PC̃ + C̃P − PÃC̃−1ÃT P

−PB̃D−1B̃T P − (C̃ + D)H2 > 0. (5)

where H = diag{h1, h2, . . . , h2n}.
Proof. First, the uniqueness of the equilibrium point will

be proved. Consider the equation as follows:

C̃u∗ − Ãφ(u∗) − B̃φ(u∗) = 0. (6)

It is easy to know that if u∗ = 0, then equation (6) holds,

i.e., u∗ = 0 is an equilibrium of (3). Now, let u∗ � 0,

multiply both sides of (6) by 2(u∗)T P, one gets that

2(u∗)T PC̃u∗ = 2(u∗)T PÃφ(u∗) + 2(u∗)T PB̃φ(u∗)

≤ (u∗)T PÃC̃−1ÃT Pu∗ + (u∗)T PB̃D−1×
B̃T Pu∗ + φT (u∗)(C̃ + D)φ(u∗). (7)

It follows from (4) that

φT (u)φ(u) ≤ uT H2u, ∀u ∈ R (8)

from which, one could obtain that

φT (u∗)(C̃ + D)φ(u∗) ≤ (u∗)T (C̃ + D)H2u∗. (9)

Substituting inequality (9) into (7) yields that

(u∗)TΞu∗ ≤ 0. (10)

From condition (5), one has that for u∗ � 0

(u∗)TΞu∗ > 0, (11)

which contradicts with (10) and hence implies that the e-

quilibrium point u∗ = 0 is unique. This means the equilib-

rium point of system (1) is also unique.
Second, we shall prove that system (3) is globally

asymptotically stable. Consider the following Lyapunov
functional candidate:

V(u(t)) = uT (t)Pu(t) +
∫ t

t−τ
φT (u(s))Dφ(u(s))ds. (12)

Calculating the time derivative of V(u(t)) along the trajec-

tories of (3), it can be obtained that

�
V(u(t)) ≤ − 2uT (t)PC̃u(t) + uT (t)PÃC̃−1ÃT Pu(t)

+ φT (u(t))C̃φ(u(t)) + φT (u(t))Dφ(u(t))

+ uT (t)PB̃D−1BT Pu(t)

≤ − u(t)T
(
PC̃ + C̃P − PÃC−1ÃT P

−PB̃D−1B̃T P − (C̃ + D)H2
)

u(t).

Since PC̃ + C̃P− PÃC̃−1ÃT P− PB̃D−1B̃T P− (C̃ +D)H2 is

positive definite, hence
�

V(u(t)) < 0 holds for all u(t) � 0.

Therefore, network (3) or equivalently system (1) is glob-

ally asymptotically stable. The proof is complete. �

As discussed in the Introduction, system matrices are al-

ways indeterministic when describing the practical physi-

cal plant due to various reasons. In this paper, it is assumed

that the parameters C, A and B of the complex-valued re-

current neural networks (1) are uncertain and bounded. To

be specific, C ∈ Cr, A ∈ Ar and B ∈ Br, where matrices

sets Cr, Ar and Br are described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cr := {C = diag{c1, . . . , cn}| 0 < ck ≤
ck ≤ ck},

Ar := {A = (ak j)n×n| aR
k j ≤ aR

k j ≤ aR
k j,

aI
k j ≤ aI

k j ≤ aI
k j},

Br := {B = (bk j)n×n| bR
k j ≤ bR

k j ≤ b
R
k j,

bI
k j ≤ bI

k j ≤ b
I
k j; k, j = 1, 2, . . . , n},

(13)

in which C = diag{c1, . . . , cn}, C = diag{c1, . . . , cn}, A =
(ak j)n×n, A = (ak j)n×n, B = (bk j)n×n and B = (bk j)n×n

are given known matrices in C
n×n. Therefore, the param-

eters C̃, Ã and B̃ of the complex-valued recurrent neural
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networks (2) are also uncertain and bounded. In the fol-

lowing, for represention brevity, denote C̃ = diag{C,C},
C̃ = diag{C,C},

Ã =
(

AR −A
I

AI AR

)
, B̃ =

(
BR −B

I

BI BR

)
,

Ã =

⎛⎜⎜⎜⎜⎜⎝ A
R −AI

A
I

A
R

⎞⎟⎟⎟⎟⎟⎠ , B̃ =

⎛⎜⎜⎜⎜⎜⎝ B
R −BI

B
I

B
R

⎞⎟⎟⎟⎟⎟⎠ .
Definition 1. The complex-valued recurrent neural net-

works (1) with the parameters range defined by (13) is

globally robustly stable if the equilibrium point z∗ =
(z∗1, . . . , z

∗
n)T of the system (1) is globally asymptotically

stable for all C ∈ Cr, A ∈ Ar, B ∈ Br.

Theorem 2. Suppose that the Assumption 1 is sat-

isfied, then the complex-valued recurrent neural network

(1) subject to parameter uncertainties in (13) is globally

robustly stable if there exist two diagonal matrices P =
diag{p1, p2, . . . , p2n} > 0 and D = diag{d1, d2, . . . , d2n} > 0

such that

2ρ − α−1‖P‖22(‖Ã∗‖2 + ‖Ã∗‖2)2 − ‖P‖22(‖B̃∗‖2
+‖B̃∗‖2)2‖D−1‖2 − β‖H2‖2 > 0, (14)

where ρ = min1≤k≤n{pkck, pn+kck}, α = min1≤k≤n{ck}, β =
max1≤k≤n{c̄k + dk, c̄k + dn+k}.
Proof. Similar to Theorem 1, construct the Lyapunov func-

tional candidate in (12) and calculate the time derivative of

V(u(t)) along the trajectories of (3), by utilizing Lemma 1

and (9), one gets that

�
V(u(t)) ≤ − 2uT (t)PC̃u(t) + uT (t)PÃC̃−1ÃT Pu(t)

+ u(t)T (C̃ + D)H2u(t)

+ uT (t)PB̃D−1B̃T Pu(t)

≤ − 2ρ‖u(t)‖22 + ‖P‖22‖Ã‖22‖C̃−1‖2‖u(t)‖22
+ ‖P‖22‖B̃‖22‖D−1‖2‖u(t)‖22
+ ‖C̃ + D‖2‖H2‖2‖u(t)‖22
≤ − 2ρ‖u(t)‖22 + α−1‖P‖22(‖Ã∗‖2
+ ‖Ã∗‖2)2‖u(t)‖22 + ‖P‖22(‖B̃∗‖2
+ ‖B̃∗‖2)2‖D−1‖2‖u(t)‖22
+ β‖H2‖2‖u(t)‖22. (15)

It follows from condition (14) that
�

V(u(t)) is negative defi-

nite for u(t) � 0. Hence, the uncertain complex-valued net-

work (1) with parameters in (13) is globally robustly stable.

The proof is complete. �

Remark 1. In [9], the global robust stability of complex-

valued recurrent neural networks with time-delays and un-

certainties has been investigated. However, the sufficient

conditions obtained there only utilized the information of

C, while the information of C was omitted. In this paper,

the given condition in Theorem 2 includes not only the in-

formation of C but also the information of C.

4. Illustrative examples

In this section, an numerical example is given to demon-

strate the effectiveness of the proposed criteria. Consid-

er a two-neuron complex-valued recurrent neural network

described by (1) with τ = 2, L = (−2 + i, 6 + 8i)T , and

the parameter uncertainties are in the form of (13) with

C = diag{2.8, 2.9}, C = diag{3.1, 3.2},

A =

[ −0.1 − 0.2i 0.1 − 0.1i
0.1 + 0.2i −0.2 + 0.1i

]
,

A =

[
0.1 + 0.3i 0.2 + 0.2i
0.3 + 0.4i 0.2 + 0.3i

]
,

B =

[ −0.1 + 0.1i −0.1 + 0.2i
0.2 − 0.3i 0.3 − 0.1i

]
,

B =

[
0.1 + 0.3i 0.2 + 0.4i
0.4 − 0.1i 0.4 + 0.1i

]
.

For zk = xk + iyk with xk, yk ∈ R, the activation functions in

(1) are taken as

f R
k (zk(t)) =

1

2
(|xk + 1| − |xk − 1|),

f I
k (zk(t)) =

1

2
(|yk + 1| − |yk − 1|), k = 1, 2.

It is easy to verify that fk(·) satisfies Assumption 1 with

rk = 1 and sk = 1.

By resorting to Theorem 2, it is observed that there ex-

ist two diagonal matrices P = D = I satisfying condition

(14), i.e., 2ρ − α−1‖P‖22(‖Ã∗‖2 + ‖Ã∗‖2)2 − ‖P‖22(‖B̃∗‖2 +
‖B̃∗‖2)2‖D−1‖2 − β‖H2‖2 = 0.0575 > 0. Therefore, it fol-

lows from Theorem 2 that the complex-valued recurren-

t neural network (1) is globally robustly stable.

For simulation aim, we take C = diag{2.9, 3} and

A =
[
−0.05 + 0.1i 0.15 + 0.1i

0.2 + 0.3i −0.1 + 0.2i

]
,

B =
[

0.05 + 0.2i 0.1 + 0.3i
0.3 − 0.2i 0.35 + 0.05i

]
.

Figure 1 and Figure 2 illustrate the time responses of the

states for the recurrent neural network (1).

5. Conclusion

In this paper, based on the Lyapunov functional method

and the matrix analysis technique, not only the lower bound

information but also the upper bound information of the un-

certain self-feedback matrix have been considered to estab-

lish the sufficient conditions to ascertain the robust stability
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Figure 1: Trajectories of the real parts x(t) of the states z(t)
for network (1).
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Figure 2: Trajectories of the imaginary parts y(t) of the s-

tates z(t) for network (1).

for the complex-valued recurrent neural networks with in-

terval time-varying parameters and constant delay. One nu-

merical simulation further demonstrates the effectiveness

of the obtained criteria. In the near future, research top-

ics include the stability analysis of the complex-valued re-

current neural networks with discontinuous activation func-

tions and stochastic disturbances.
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