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Abstract—Decompositions of d-dimensional tensors
are crucial either in structure recovery problems and merely
for a compact representation of tensors. However, the well-
known decompositions have serious drawbacks: the Tucker
decompositions suffer from exponential dependence on the
dimensionality d while fixed-rank canonical decomposi-
tions are not stable. In this paper we present new decom-
positions that are stable and have the same number of rep-
resentation parameters as canonical decompositions for the
same tensor. Also we present a theoretical analysis of com-
pression properties of the new approach and discuss some
applications.

1. Introduction

In various problems we are naturally led to multi-index
arrays (tensors) with entries a(i1, ..., id) determined by d in-
dices, each attaining n values. The total number of the en-
tries is nd and exhibits exponential growth in d, which is
known as the “curse of dimensionality”. Even for d ≥ 5
numerical computations with tensors are feasible only due
to some special exact or approximate decompositions with
a dramatically smaller number of defining parameters than
nd.

In higher dimensions one can consider the so-called
Tucker decomposition [15] (a certain generalization of the
Singular Value Decomposition for matrices)

a(i1, ..., id) =

r∑
t1=1

...

r∑
td=1

g(t1, ..., td) q1(i1, t1) ... qd(id, td),

which, besides the two-dimensional arrays q1, ..., qd, is de-
termined by a d-dimensional array g(t1, ..., td) with rd en-
tries. Usually r � n, but the exponential growth in d re-
mains. Apart from that, the skeleton decomposition for
matrices transforms in tensors to the so-called canonical
decomposition [3, 6]

a(i1, ..., id) =

R∑
s=1

u1(i1, s) ... ud(id, s) (1)

with dRn defining parameters. In contrast to the Tucker
decomposition, the canonical decomposition with minimal
possible values of R is an unstable and computationally
hard problem [14]. In tensor operations in the canonical
format the number of summands R grow rapidly, so we

have to approximate the results using the same format with
smaller value of R. The latter is called recompression and
cannot be reliably and fastly done in the canonical format.
Thus, if we want to overcome the “curse of dimensionality”
then we need to look for some other decompositions.

2. Tensor tree decompositions

Recently we have proposed a recursive decomposition
[8, 10]: given a d-dimensional tensor, we construct a tree
in which the nodes of every next level are associated with
tensors of lower dimensionality, the leafs are associated
with the two or three-dimensional tensors, and in the end
the tensor is defined by this tree and related two or three-
dimensional tensors. First we called this decomposition a
Tree-Tucker decomposition because the tree in [8] was sug-
gested to construct for the Tucker core. Of course, a shorter
hame is TT decomposition. Now we have to admit that the
Tucker decomposition as a preliminary step is not manda-
tory. None the less, we keep the same name TT since any-
way we construct some Tensor Tree.

By definition, the tensor tree is binary and arises by re-
cursion. Each node is marked by an auxiliary tensor, the
node dimensionality is the dimensionality of this tensor.
The original tensor is a mark for the root node. If a node
V0 is of dimensionality d0 then its children V1 and V2 have
dimensionalities d1 + 1 and d2 + 1 with

d1 + d2 = d0.

If d0 = 3 then we can take d1 = 1, d2 = 2. Each node of
dimensionality 2 is a leaf, each node of dimensionality 3 is
a leaf or generates 2 leaf nodes of dimensionalities 2 and 3.
A precise rule is below.

Let us refer to the original indices i1, ..., id as spatial in-
dices. Each new auxilary tensor must be defined by some
spatial indices (at least one) and some new indices s1, s2, ...
that will be called auxiliary indices. Each node that is not
a leaf generates exactly one auxiliary index. Thus, the total
number of auxiliary indices is equal to the total number of
nodes minus the number of leaf nodes.

Let a node V0 be marked by a tensor a0(i′1, ..., i
′
d0

) and
generate an auxiliary index s. Then its children nodes
V1 and V2 are marked by tensors a1(i′′1 , ..., i

′′
d1
, s) and

a2(i′′d1+1, ..., i
′′
d0
, s), where the indices i′′1 , ..., i

′′
d0

constitute a
permutation of the indices i′1, ..., i

′
d0

. If there is exactly one
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auxilary index among the latters, then it is given to one of
the tensors a1 or a2. In the case of two auxiliary indices one
is given to a1 and the other is given to a2. It is important to
note that this rule guarantees that every tensor that is not a
leaf receives at most two auxiliary indices.

By definition, the leaf nodes are of dimensionality 2 or
3. Every node of dimensionality 2 is a leaf and has exactly
one spatial index. Then we consider alternative options (A)
and (B) as below, choose one of them before constructing
a tree and during the construction demand that a node of
dimesionality 3 is set to be a leaf if and only if it has:

(A) two auxiliary indices;

(B) three auxiliary indices.

If we opt for the rule (A), then a binary tree constructed
is called a (basic) tensor tree, if (B) then it is an extended
tensor tree. The corresponding decompositions represent
the given tensor as the sum of products of the leaf tensors
over all auxiliary indices and are called TT (basic TT) or
extended TT decompositions.

Besides the above formalism, the tensors a0, a1, a2 are to
be related as follows:

a0(i′1, ..., i
′
d0

) =

r∑
s=1

a1(i′′1 , ..., i
′′
d1
, s) a2(i′′d1+1, ..., i

′′
d0
, s). (2)

It is required that the number of summands r for a0 is mini-
mal possible among all splittings of the form (2). The num-
ber r = r(V0) is called a splitting rank or compression rank
of the node V , and its maximal value for all the nodes is the
TT rank of the given tensor. If r is the TT rank, then each
of auxiliary indices attains at most r values.

A complete description of the TT decomposition in-
cludes:

• a binary tree;

• two and three-dimensional tensors associated with the
leafs;

• a distribution of spatial and auxilary indices for every
node.

Theorem 1. The total number of entries of the leaf tensors
of an extended TT decomposition of rank r does not exceed
drn + (d − 2)r3.

Theorem 2. Assume that a tensor a(i1, ..., id) possesses a
canonical decomposition (1) with R terms. Then a(i1, ..., id)
admits a TT decomposition of rank R or less.

It is proved in [8] that a basic tensor tree has at most d−2
leafs with two auxiliary indices, and the splitting of any of
them can give exactly one leaf with three auxiliary indices.
Thus we have at most d − 2 leafs with three auxiliary in-
dices. Besides that, there should be exactly d leafs with
spatial indices, and each contains exactly one auxiliary in-
dex, which makes the claim obvious. Theorem 2 is proved
in [8].

3. Effective rank of a tensor

The minimal possible value RANK(a) of R in decomposi-
tions of the form (1) is called canonical rank of the tensor
a(i1, ..., id). Its properties are known to differ a lot from the
properties of the matrix rank. First, if all the entries are
obliged to belong to a subfield F of complex numbers C
then the canonical rank may depend on F. Second, a tensor
of rank R can be a limit of tensors of rank r < R.

We propose a certain way to avoid the both difficulties.
Define the effective rank as follows:

ERank(a) = lim sup
ε→+0

min
|b−a|≤ε

b∈C(n1,...,nd)

RANK(b), (3)

where C(n1, ..., nd) is a set of all arrays (tensors) of size
n1 × ... × nd with entries from C. Similarly, F(n1, ..., nd)
denotes the set of all tensors of size n1 × ... × nd with en-
tries from F. If a tensor a belongs to F(n1, ..., nd) then
we can be naturally interested to calculate its canonical
rank over F (when minimizing R we use the constraint
u1(i1, s), ..., ud(id, s) ∈ F).

Despite the fact that canonical rank depends on F, by
the very definition the effective rank (3) does not, for ε-
perturbations of the tensor are now all those that belong to
C and no longer obliged to stay in F. A close concept is that
of border rank[2]. However, the border rank assumes that
b ∈ F(n1, ..., nd) and keeps dependence on F. An important
theorem is as follows [10].

Theorem 3. Let a ∈ F(n1, ..., nd). Then for this tensor
there exists a TT decomposition of rank r ≤ ERank(a) with
entries of all tensors belonging to F.

E 1. Let a d-dimensional tensor is a representa-
tion of a matrix A of the following form:

A = Λ ⊗ I ⊗ ... ⊗ I + I ⊗ Λ ⊗ ... ⊗ I + .. + I ⊗ ... ⊗ I ⊗ Λ.

Then

P(h) ≡ ⊗d
s=1(I + hΛ) = I + hA + O(h2),

and it follows that

A =
1
h

P(h) −
1
h

P(0) + O(h).

Hence, ERank(A) = 2.

E 2. Consider a real-valued tensor F defined by
the function

f (x1, ..., xd) = sin(x1 + ... + xd)

on some grids for x1, ..., xd. In [1] it is shown that the real
canonical rank of F does not exceed d (it is likely to be
exactly d). Using the equality

sin x =
exp(ıx) − exp(−ıx)

2ı
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we deduce that ERank(F) = 2.
By Theorem 2, any canonical decomposition can be

transformed to a TT decomposition. By Theorem 3, the
latter may have (and frequently has!) an advantage in the
number of representation parameters as the TT rank may
be (and frequently is!) significantly less than the canonical
rank.

Moreover, in contrast to the canonical decomposition,
the optimal TT approximation to a given tensor with pre-
scribed compression rank bounds always exists [9] and is
stable by the following reason: if a sequence of tensors con-
verges to a tensor then the compression ranks of the limit
tensor cannot be less than the lower limits of sequences
of the corresponding compression ranks of these tensors.
In [9] we present a full-to-TT compression algorithm that
computes a quasi-optimal approximation to a given array
(tensor) of dimensionality d with a deterioration factor that
does not exceed

√
d − 1.

4. TT algorithms

A nice paradigm for the new generation of numerical al-
gorithms for tensor operations is as follows: assume that all
initial tensors are given in the TT format, then tensor op-
erations can be performed approximately within a wanted
accuracy and the result of any operation should be a ten-
sor in the same TT format with a prescribed bound on the
TT rank. Remark that either the Tucker and the canoni-
cal formats do not suit this paradigm, though by different
reasons: the former does not because it suffers from the
curse of dimensionality, the latter since a good recompres-
sion procedure is lacking.

It is certainly most importnat that the TT format admits a
fast and reliable recompression algorithm proposed in [7].
It is based on a sequence of SVDs and in all respects in-
herits the perfection of the SVD algorithm. In effect we
are able to compute even exact singular value decomposi-
tions for all auxiliary unfolding matrices of a tensor in the
TT format. These matrices can be of huge size, but their
SVDs receive orthogonal (unitary) matrices in a structured
factorized form (see an exposition example in [11]).

The recompression algorithm is in no way trivial, but,
despite that, it has a simple and lucid logical structure. For-
mally it applies to very special tensor trees where at every
splitting of indices we put exactly one spatial index into one
of the two groups. Such a tree generates a representation of
the tensor in the form of a tensor train

a(i1, . . . , id) =
∑

s1,...,sd−1

g1(i1, s1) g2(s1, i2, s2) . . .

. . . gd−1(sd−2, id−1, sd−1) gd(sd−1id)

with tensor carriages g1, . . . , gd. This particular TT repre-
sentation was put forth in [7] and found so convenient that
certainly ought to be the main case in numerical practice.
Since the associated tree is trivial, it remains only as kind of

artefact. In this special case all constructions and descrip-
tions need not to refer to a tree. Thus, this TT decomposi-
tion involves neither tree, nor Tucker anymore. The name
tensor trains was proposed in [9, 11] and seems just natural
as any two neighbor tensor carriages are “attached” each to
other by one common auxiliary index.

In the light of the above paradigm, when performing op-
erations with tensors we can approximate a TT tensor by
another TT tensor of lower rank in a fast way. The tensor-
train recompression procedure has complexity O(dnr3) [7].
The influence of such approximations can be studied within
a general framework suggested in [5].

5. Applications and perspectives

It is especially interesting to acquire TT approximations
using a small portion of entries of a given tensor, as in the
incomplete cross approximation methods [4, 13] that inter-
polate a matrix on the entries of some cross of its columns
and rows. These matrix constructions have recently been
extended to tensors and provided us with a new interpo-
lation formula in d dimensions on the entries of a cer-
tain tensor-train cross [9]. The total amount of entries is
O(dnr2), the complexity of the TT-cross approximation al-
gorithm is O(dnr3). Thus, the curse of dimensionality is
not there.

The TT-cross approximation algorithm proposed in [9]
is bound to make essential progress in many applications.
For instance, since the TT cross algorithm gets on input
only a procedure for computation of tensor entries and then
carefully applies it to compute only a small portion of all
entries, this yields a new method for computation of d-
dimensional integrals without Monte Carlo ideas [9]. Us-
ing appropriate one-dimensional quadrature rules, we need
then to find a scalar value

γ =
∑

i1

...
∑

id

a(i1, ..., id) x1(i1) ... xd(id).

And this can be done in O(dnr2) operations so long as the
tensor a(i1, . . . , id) is represented by a tensor train with the
compression rank r. For more perspectives for application
of tensor trains we refer to our recent work [9].

Last but not least, tensor trains only look as a particular
case of tensor-tree decompositions. In fact, binary tensor
trees such as considered above always reduce to some ten-
sor trains [12].
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