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Abstract—
Many switched circuits are made of linear compo-

nents switched by a simple logic unit. In this paper,
we use a generic planar Piecewise Affine Hybrid Sys-
tem (PWAHS) to model this kind of circuits. Usually,
simulations are run by analytical methods (adapted to
a specific simple model) or by numerical simulations
that can miss some events occurrences. We propose a
generic planar method to simulate PWAHSs with pe-
riodic and state dependent events. Using analytical
expression, our approach can reach arbitrate accuracy
in event detections without any loss. As a result, we
have implemented our method in a Scilab toolbox.

1. Introduction

Switched circuits behavior is mostly simulated by
pure numerical methods where precision step is in-
creased when the system is near of a switching con-
dition. Those numerical tools are widely used mainly
because of their ease-of-use and their ability to sim-
ulate a wide range of circuits including non–linear,
time–variant, and non–autonomous systems.

Even if those simulators can reach the desired rel-
ative precision for a continuous trajectory, they can
miss some switching condition and then diverge dras-
tically from the trajectory as in figure 2. This could be
annoying when ones are interested by border collision
bifurcations, or when local behavior is needed with a
good accuracy. In those applications, an alternative
is to write down analytical, or semi–analytical, trajec-
tories and switching conditions to obtain a recurrence
which is very accurate and fast to run. Building and
adapting such ad’oc simulators represents a lot of ef-
forts and a risk of mistakes.

Generic and accurate simulators can be proposed if
we restrict to a certain class of system. A simulation
tool with no loss of event is proposed in [4] and [5] for
PWAHSs defined on polytopic closed sets. This class
of PWA differential systems has been widely studied as
a standard technique to approximate a range of non–
linear system. But closed polytopic partition of the

state space does not allow simulation of most switch-
ing circuits where switching frontiers are mostly single
affine constraints or time–dependent periodical events.

In this paper, we focus on planar PWAHSs with
such simple switching conditions which can model a
family of switched planar circuits: bang–bang regula-
tors, boost converter, charge-pump phase locked loop,
. . .

This class of systems has analytical trajectories that
helps to build fast algorithm with no loss of events.
We propose a semi-analytical solver for hybrid systems
which provides :

• A pure numerical method when the system is non–
nonlinear or non-planar;

• A pure analytic method when all continuous parts
of the system and switching conditions can be
solved symbolically. This can be the case for the
boost converter [2], [9], the second order charge-
pump phase locked loop [6], [8].

• A mixed method using analytical trajectories and
numerical computation of the switching instant
when those solutions are transcendent. This has
been used for 3rd order CP-PLL [6]. It can also
be the case for the buck converter [3], [9], . . .

This paper is organized as follows. Section II de-
scribes the problem to be deal with and introduces
a general algorithm to solve planar HSs. Section III
presents the algorithm that detects events’ occurrence.
An illustrating example is given in Section IV. Finally,
a conclusion is stated in Section V.

2. General algorithm to solve HSs

Definition of a HS (X, E, t)
A general definition of HS is presented here. This

type of dynamical systems is characterized by the co-
existence of two kinds of state vectors: continuous
state vector X(t) of real values, and discrete state vec-
tor E(t) belonging to a countable discrete set M.
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Definition 1 A continuous-time, autonomous HS is
a system of the form:

Ẋ(t) = f (X(t), E(t)) , f : H → Rn

E+(t) = φ (X(t), E(t)) , φ : H →M (1)

H = Rn ×M is called hybrid state space. X(t) ∈ Rn

is the continuous state vector of the HS at time instant
t and E(t) ∈M := {1, ..,M} its discrete state. E+(t)
denotes the updated discrete state right after time in-
stant t. φ : H → M describes the discrete dynamic,
it is usually modellized by Petri Net. A transition
from E(t) = i to E+(t) = j is valid when the state
X reaches a switching set called SEi,Ej . Such transi-
tion are called state dependent events. A HS is called
piecewise affine if for each E ∈ M, f(X, E) can be
defined by f(X, E) = AEX + BE ,∀X.

Remark — In non autonomous HS, the function φ
can also depend on time φ (X, E, t) : Rn×M×R→M.
Then time dependent events can occurred and validate
a transition, such as periodic events.

Hybrid system class of interest
We will consider two dimensional PWAHS (X(t) ∈

R2). f is then defined in the affine piecewise form

f(X(t), E(t)) = AE(t)X(t) + BE(t) (2)

We will consider two kinds of events: state dependent
events and periodic events.
The state dependent event transition SEiEj is defined
by an affine state border of the form N ′

ij .X < lij .
In this case an event can occur when the contin-
uous state reaches the border of the set SEiEj

={
X(t) ∈ R2 : N ′

ij .X ≤ lij
}

Note that the state SEiEj is open.
Remark — We will consider, with no loss of

generality, the case where a transition occurs at time
dSEiEj if and only if the state X(dSEiEj ) reaches a
border of the set SEiEj from the outside. Figure 1
defining a transition with the complimentary set S
allows to detect the event in both directions. Both
transitions can be met with the set B = S ∪ S̄.
Periodic events are simply defined by time instants
t = dPEiEj

, where dPEiEj
belongs to the set

PEiEj = {t : t = kT + ϕ, k ∈ N} .
T is the period ϕ the phase of such periodic events.

3. Event–driven simulation of PWAHSs

The simulation will compute the hybrid state
from event to event. Knowing the states X(tk)
and E(t+k ), one can compute the trajectory
X(t > tk) =

∫ t

tk
f

(
X(tk), E(t+k )

)
dt+X(tk), assuming

that the discrete state is constant E(t > t+k ) = E(t+k ).

Xk

Xk+1

N 1
X
≥

l 1

N2 X ≥ l2

X(t, Xk, E(t+k ))

Figure 1: Oriented polytopic state dependent transi-
tions.

Then the following algorithm runs the simulation de-
termining the dates at the next event as the smallest:

Data: tk, Xk, Ek.
while t < tfin do

Compute all events’ dates dSEiEj and dPEiEj

;
tk+1 = min(dSEiEj

, dPEiEj
);

Xk+1 = f (Xk, Ek, tk+1);
Ek+1 = φ (Xk, Ek, tk+1);

end
Algorithm 1: Algorithm computing hybrid state
at tk+1

4. Algorithm to detect event occurrence

We consider an affine Cauchy problem in R2:{
Ẋ(t) = AX(t) + B, t > t0
X(t0) = X0

(3)

where X0 is the initial value. We compute the small-
est strictly positive time t∗ so that the trajectory of
X(t) intersects the fixed border Bi arriving from the
part of the plan where N ′

i .X < li.
The function fi(t) = N ′

i .X(t)− li defines the condi-
tion guard for a border Bi. Thus, the problem can be
formulated as follows:
Find the smallest t∗ > 0 such that{

∃ t = t∗, f(t∗) = 0
∃ δ > 0,∀t ∈ ]t∗ − δ, t∗[ , f(t) < 0 (4)

If fi does not have any strictly positive root or the last
condition is not satisfied, t∗i is given the infinite value.

4.1. Analytical trajectories

The analytical trajectory X(t) is given by the gen-
eral integral form:

X(t) = eA(t−t0)X0 +
∫ t

t0

eA(t−s)Bds (5)
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When A is invertible, the expression becomes linear:

X(t) + A−1B = eA(t−t0)(X0 + A−1B) (6)

The analytical expression of exponential matrix eAt

takes two forms depending on whether the eigenvalues
p1 and p2 of the matrix A are equals or not:
If p1 6= p2, then

eAt =
(p1I−A◦)

p1 − p2
ep1t − (p2I−A◦)

p1 − p2
ep2t (7)

If p1 = p2 = p, then

eAt = (I + (p−A◦) t) ept (8)

where: A =
(

a11 a12

a21 a22

)
and A◦ =

(
a22 −a12

−a21 a11

)
Using these expressions, we can determine the func-

tion f(t) of the problem (4) to be in the form:

f(t) = a1 + a2 t + a3 t2 + (a4 + a5 t) ep1 t + a6 ep2 t

where ai are real scalars.
Depending on eigenvalues p1 and p2, there is five

cases that determines the values of coefficients ai as
shown in Table 1.

f(t) = a1+. . . p1 ∈ R∗ p1 = 0

p2 ∈ R∗ a4 e p1t + a6 e p2t a2 t + a6 ep2t

p2 = 0 a2 t + a4 ep1t a2 t + a3 t2

p1 = p2 ∈ C∗ a4ep1t + a5ep2t,with a5 = a4 ∈ C∗

p1 = p2 ∈ R∗ (a4 + a5 t)ep1t

Table 1: Expressions of f(t) depending on eigenvalues
p1 and p2.

Remark — Coefficients ai are real scalars that de-
pend on the eigenvalues p1 and p2, the initial point Xk

and the border parameters Ni and li.
In some cases, (p1 = p2 = 0, grey cell in Table 1)

roots of f(t) can be found analytically and the problem
is solved with machine precision.

In other cases,solution can not be found with clas-
sical functions and then a numeric algorithm should
be used. Using classical methods like newton does not
guaranty existence or convergence of the smallest pos-
itive root. To meet these conditions, let use analytical
roots of the derivative function f ′(t) expressed in Ta-
ble 2.

We can then compute analytically the set L of or-
dered roots of f ′(t), those roots determines monotone
intervals of f(t) The following algorithm is used to re-
turn the solution t∗ when it exists or the value∞ if not.

f ′(t) = . . . p1 ∈ R∗ p1 = 0

p2 ∈ R∗ a4 p1 e p1t + a6 p2 e p2t a2 + a6 p2 ep2t

p2 = 0 a2 + a4 p1 ep1t a2 + 2 a3 t

p1 = p2 ∈ C∗ a4 p1 ep1t + a4p1ep1t,with a4 ∈ C∗

p1 = p2 ∈ R∗ (a4 p1 + a5 + a5 p1 t) ep1t

Table 2: Expressions of f ′(t) depending on eigenvalues
p1 and p2: all roots are analytical

Data: Ni, li, A, B,Xk

Result: construct the set L, compute t∗

T ← {0, L,∞};
t∗ ←∞;
for i← 1 to (card(T )− 1) do

if f(T (i)) < 0 & f(T (i + 1)) > 0 then
t∗ ← solve [T (i), T (i + 1)];
Break;

end
end

Algorithm 2: Algorithm computing t∗ when a
solution is transcendent

Remark — When (p1, p2) ∈ C∗×C∗ the set L is infi-
nite: when the real part of pi is positive, the algorithm
will end by finding a root. In the other case the set
L should be reduced to its 3 first elements, to find a
crossing point when it exists.

5. Example

The above semi–analytical algorithm was imple-
mented and tested on the following simple PWAHS
(fig.3):

S1 : Ẋ(t) =
[

0.1 1
−1 0.1

]
X(t) +

[
0
0

]

S2 : Ẋ(t) =
[

0 0
0 0

]
X(t) +

[
1
1

]
,

(9)

with state events:

SE1E2 =
{
X ∈ R2 : [1 0]X < −0.513036

}
SE2E1 =

{
X ∈ R2 : [0 1]X < 1

} (10)

In order to illustrate the effectiveness of our ap-
proach, we have compared our simulation results with
those obtained using the numerical solver Scicos (ODE
“lsoda”). Figure 2 that depicts the two different sim-
ulations with initial condition X0 = [0; 0.17] and the
same relative and absolute precision, shows that Scicos
trajectory represented by a dashed curve in the plot,
has skipped a state event that has been detected by
our algorithm at t = 11.096993s.
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Figure 2: Scicos simulation versus semi–analytical simulation
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S21S12

Figure 3: Hybrid automaton example.

6. Conclusion

In this paper, we have demonstrated an accurate
and fast method to determine events occurrence for
planar piecewise affine hybrid systems. As a result,
we have implemented our algorithm in a scilab tool-
box (free download on authors web pages) that will
be extended in the near future to add analysis tools
such as displaying the bifurcation and parametric di-
agrams. This algorithm takes advantage of analytical
form that appear in the planar case. This can not be
extended to higher dimension, in this case algorithm
presented in [4] should be adapted in a bounded space
with special cares concerning the event direction.
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