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Abstract– In a complex dynamical network, one node
of the network often has multidimensional dynamics. In
this paper, the controllability of complex dynamical
networks with multidimensional node dynamics is studied.
Using the Maximum Matching principle, the minimum
number of controlled nodes is obtained. Rigorous criteria
are deduced to find out the driver nodes and some
simulations are given to effectively verify the proposed
schemes.

1. Introduction

A complex dynamical network is composed of
numerous nodes, which are driven by time-dependent
characteristics diversely [1-3]. Multiple existences of
complex dynamical networks have extended everywhere
from social networks [4], communication networks [5],
power grids [6], the Internet [7], etc, which have a far-
reaching influence on our daily life. For a long time,
people have been arguing that how to control a complex
dynamical network effectively and have developed many
methods, including adaptive feedback control [8], pinning
control [9], impulse control [10], event-triggered control
[11], etc.

Recently, much attention has been paid on the
controllability of complex dynamical networks [12-17].
Liu  .et al [12] firstly studied this problem, and proposed
the so-called minimum input theorem. It is used to decide
the minimum number of driver nodes by using the
Maximum Matching principle in graph theory. Their most
contribution is that they introduce the Maximum
Matching principle into the study of network
controllability. In [12], the dynamic of each node in the
network is described by the one-dimensional linear system,
thus the network they considered is actually a
multidimensional linear system. However, in most
physical complex dynamical networks, the node often has
multidimensional dynamics. In [13], the control centrality
is introduced to quantify the ability that one single node
fully control a directed and weighted complex network.

An exact controllability example of complex dynamical
networks is introduced by Yuan  .et al [15]. Based on the
eigenvalues and rank of the network matrix, they shown
that the minimum number of driver nodes is fixed and
determined by the maximum geometric multiplicity of the
network matrix. Their framework is valid for both
directed and undirected networks. A perturbation approach
to optimizing the controllability of complex dynamical
networks is proposed in [16]. They selected proper
locations judiciously at which as few as possible links are
added so that the full rank condition could be satisfied,
that is, the whole perturbed complex network could be
fully controlled by only one external input. However,
most existing researches on the controllability of complex
dynamical networks [12-16] are still concentrated on the
network characterized by one-dimensional node dynamics,
which is impractical to most complex networks whose
node dynamics are often multidimensional. The node
dynamics should be the vital factor to determine the
controllability of complex networks [17]. If all nodes in a
complex dynamical network could perceive and use their
own states, which means each node has its own self-loop,
then the whole network is perfect matching and its
controllability is not determined by the degree distribution
but the node dynamics.

In this paper, we investigate the controllability problem
of the complex dynamical network assuming that the node
of the network has n-dimensional  1n  dynamics. By
using the Maximum Matching principle, we achieve the
minimum number of driver nodes. Corresponding criteria
have been obtained. The rest parts of this paper are
arranged as follows. In Section 2, considering the states of
driver nodes could be fully controlled, the controllability
of complex networks with n-dimensional node dynamics
is studied. In Section 3, several simulation examples are
given to demonstrate the validity of the proposed schemes.
Some conclusions are provided in Section 4.

2. Controllability of general complex networks
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Consider a complex dynamical network ( )G D whose
topology structure is represented by D consisting of N
nodes with n-dimensional dynamics, shown in Eq. (1):
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the configuration matrix which implies the interactive
structure underlying the complex network. 0ijd  if there
exists a directed connection from node i to node j
( i j ), otherwise 0ijd  . Define the diagonal elements

of D as
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R    is the inner

coupling matrix whose elements represent relations
between each node and the whole network, suggesting
that how combinations of state variables in different nodes
influence the complex network.

For generality, three hypotheses are introduced here:
Hypothesis 1 (H1) The topology matrix D is symmetric,
i.e., ij jid d , which means all the interconnections
between any two nodes are undirected.
Hypothesis 2 (H2) The inner coupling matrix ij is
simplified as identity matrix which describes a mostly
common type of coupling. The coupling manner between
any two nodes is actually reflected in the interactions
between corresponding states in each node.

For simplicity, we assume the node dynamics of the
network as an n-dimensional linear system. The complex
network ( )G D could be expressed by Eq. (2) from Eq. (1):
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where  1 2( ) ( ), ( ), , ( ) T m
i i i imu t u t u t u t R  is called the

input vector, which is injected to control the
corresponding node through the input matrix n m

ib R  .

  n n
ij n n

A a R 


  is the system matrix. It is assumed that

there exist zero elements in A , which means the linear
system is not fully coupling.
Hypothesis 3 (H3) For a given complex network, if there
exist certain nodes needed to be controlled, that is, every
state of those nodes then would be imposed control inputs
on independently.

In the following, the Maximum Matching principle is
utilized to find out which nodes and state variables are
unmatched such that we could impose effective inputs
accordingly. For the complex network ( )G D composed of
N n-dimensional dynamical nodes, it could be view as n

simple artifact networks  ( ) | 1, 2,...,kG D k n , as Fig. 1
shows:

Fig. 1 ( )G D is viewed as  ( ) | 1, 2kG D k  .

Select one ( )kG D arbitrarily and implement the
Maximum Matching principle on it, it is easy to decide
whether ( )kG D is perfect matching: if so, any one node
could be chosen as the driver one; if not, unmatched nodes
would be imposed control inputs on directly. If only those
nodes singled out through the Maximum Matching
principle are injected effective inputs accordingly, the
origin complex network ( )G D would be controllable.
Theorem 1 Suppose that (H1), (H2) and (H3) hold. For
the complex network ( )G D with n-dimensional node
dynamics, its controllability is equivalent to the
counterpart of ( )kG D with one-dimensional node
dynamics.
Proof The key to address the structural controllability
problem of the complex network with n-dimensional node
dynamics lies in ‘isolating’ the origin network ( )G D into
n artifact subnetworks  ( ) | 1, 2,...,kG D k n . There are
two prerequisites for the so-called ‘isolation’: (1) (H2)
holds. Whether the node states could be matched or not
completely depends on the coupling structure D rather
than the node dynamics A (2) (H3) holds. (H3)
guarantees that all  ( )kG D would not differ from each
other after imposing control inputs on certain nodes. In
every ( )kG D , it takes the same way to fulfill the
maximum matching and eliminate the unmatched nodes
with external inputs. Once these two prerequisites are
satisfied, ( )G D , with n-dimensional node dynamics,
could be viewed as n independent subnetworks  ( )kG D ,
with one-dimensional node dynamics. By now one
arbitrary ( )kG D would be available for the Maximum
Matching principle. If one ( )kG D is controllable, the
others would be either. Then the origin complex network

( )G D would be controllable. The proof is done. □

Theorem 1 has essential interpretations to the
controllability of undirected complex networks attached
multidimensional node dynamics, which is significant in
practical applications.

3. Simulation examples
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A complex network ( )G D composed of ten dynamical
nodes is chosen here for simulation, which is shown as Eq.
(3):
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The star-shaped structure is selected as the node
dynamics, which is described by the system matrix A as
shown in Fig. 2:
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Fig. 2 The node dynamics.

The topology structure of ( )G D is set as D , which is
shown in Fig. 3:
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0 0 0 1 0 0 0 0 0 0

,
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Fig. 3 The topology structure of ( )G D .

It evidently satisfies Hypothesis 1 and 2. If every state
of the driver node is controlled directly, namely
Hypothesis 3 holds, then ( )G D could be viewed as four

subnetworks  1 2 3 4( ), ( ), ( ), ( )G D G D G D G D , which have
the same coupling structure D as shown in Fig. 4:

Fig. 4 The coupling structure of  ( ) | 1, 2,3, 4kG D k  .

Apply the Maximum Matching principle on an arbitrary
( )kG D and its bipartite graph is demonstrated as Fig. 5:

Fig. 5 The bipartite graph of ( )kG D .

From Fig. 5, it seems obviously that nodes  5, 8X X
are unmatched, which should be chosen as driver nodes:

Fig. 6 The controlled network ( )G D .

Eq. (3) is rewritten as Eq. (4), with injected inputs
 5, 8U U , which is shown as follows:
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Fig. 7 illustrates that every state of all nodes in the
complex network ( )G D converges eventually to zero
after imposing proper inputs on fully controlled driver
nodes, which verifies the correctness of the proposed
criteria that only controlling the minimum number of
nodes could control the whole network with
multidimensional node dynamics.

.

Fig. 7 Node states of the controlled network ( )G D with fully controlled
driver nodes.

5. Conclusions

The structural controllability of general complex
networks with multidimensional node dynamics is
investigated specifically in this paper. The Maximum
Matching principle plays an important role in picking out
the minimum number of nodes which should be controlled
directly. Rigorous criteria are deduced and proofs are
given accordingly. Simulation examples verify the
feasibility of the control scheme we proposed.

On the one hand, this paper provides a fully sufficient
condition; on the other hand, it might be still too ideal to
be met in practice. Thus, the more subtle problem that
whether it is possible to control complex dynamical
networks with only partial states of driver nodes would be
investigated in our future work.
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