
Reconstructing matrices and tensors from few vectors

Cesar F. Caiafa†,1 and Andrzej Cichocki†,2

†Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN

2-1 Hirosawa, Wako, Saitama 351-0198, JAPAN

Email: ccaiafa@brain.riken.jp, cia@brain.riken.jp

Abstract—We introduce a new algorithm, namely the

Greedy-CUR algorithm for calculating a CUR decompo-

sition of a given matrix. This deterministic algorithm al-

lows one to obtain a low-rank approximation based only

on the entries of a reduced set of rows and columns. The

concept of a ”greedy” algorithm is used to sample rows

and columns of the matrix (or unfolded (matricized) tensor)

by sequentially adding one row/column that minimizes the

achieved error at every iteration. We also use Greedy-CUR

to develop a method for approximating a 3D-tensor based

only on the entries of few rows, columns and tubes fibers.

Its extension to N−dimensional tensors is straightforward

by using a hierarchical decomposition of a unfolded ten-

sor and by applying CUR approximation sequentially. We

analyze the quality of our CUR based approximations and

show how the approximation error depends on the singular

values distribution of corresponding matrices.

1. Introduction

It is known that, given a matrix Y ∈ Rm×n of rank k, one

can perfectly reconstruct it by choosing only k rows and k

columns which determine a non singular intersection sub-

matrix W and by calculating the corresponding CUR de-

composition, i.e. Y = CUR where matrices C ∈ Rm×k and

R ∈ Rk×n are composed by the selected rows and columns

respectively and U = W−1. This decomposition is also

known as the skeleton decomposition of Y [1].

More interestingly, it has been proven that, for matrices

with arbitrary rank, CUR decomposition can provide an ap-

proximation Y ≈ CW
†
τR (pseudo-skeleton approximation),

where W
†
τ is the robust Moore-Penrose pseudo-inverse i.e.

by ignoring singular values smaller than τ in its Singular

Value Decomposition (SVD). The quality of this approxi-

mation can be similar to the truncated SVD decomposition

(optimal), i.e. providing an error which is proportional to

the (k + 1)-th singular value σk+1 of matrix Y [2]. This is

a strong result that allows one to obtain a good approxi-

mations of a whole matrix from the information contained

only in a small subset of rows and columns.

In [1, 2, 3], theoretical bounds have been provided for

the case where the submatrix W is of maximum volume

1On leave from Engineering Faculty, University of Buenos Aires,

Buenos Aires, C1063ACV, ARGENTINA.
2Also from Warsow University of Technology and Systems Research

Institute, PAN, POLAND.

Table 1: Existing error bounds (in terms of Max Norm ‖·‖C and Spectral

Norm ‖ · ‖2) for the CUR (pseudo-skeleton) approximation of a square

matrix Y ∈ R
n×n when core matrix U is calculated based only on the

entries of the intersection matrix W of maximum volume.

Error Norm Bound Core Matrix

‖Y − CUR‖C ≤ σk+1(k + 1) [3] U =W−1

‖Y − CUR‖2
≤ M1 = σk+1

√
1 + k(n − k) [2] U =W−1

≤ M2 = σk+1

√
1 + k(n − k)

{

1 + 4
√

k(n − k)
}

[1] U =W
†
τ

(absolute value of its determinant) (See Table 1). How-

ever, the optimal selection of rows and columns subsets is a

challenging task because we must avoid to test all possible

combinations and even the search of a maximum volume

submatrix is hard to solve. To alleviate this computational

problem there are a class of heuristic algorithms known as

cross algorithms which sequentially selects rows/columns

by dynamically finding maximum absolute values within

their residuals (see [4] and references therein for a descrip-

tion).

Additionally, there has been an increased interest on

CUR decompositions as a tool for data analysis as an

alternative to the popular Singular Value Decomposition

(SVD) or Principal Component Analysis (PCA), specially

for cases with sparse datasets providing a representation of

data as a linear combination of few ”meaningful” compo-

nents which are exact replicas of columns and rows of the

data. Most of existing CUR algorithms for data analysis

requires to access to all data matrix entries at least once for

defining the strategy of row/column selection ([5, 6]). In

this paper, we do not consider these methods since we are

restricted to use only partial information of large scale ma-

trices (or tensors), i.e. few rows, columns (and tube fibers).

The purpose of this paper is to introduce new algorithms

for reconstructing matrices and tensors from a reduced set

of their entries. We use the theory of pseudo-skeleton de-

compositions (CUR decomposition) but, instead of search

for a maximum volume submatrix, we construct our se-

lection of rows and columns by sequentially adding a

row/column in order to minimize the error approximation

at every iteration (Greedy-CUR).

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 447 -



k columns

k
-1

ro
w

s

Matrix
( x )

Y

m n

m-k+1 choices:
Choose one which minimizes || ||
with =

CU

U W

2

-1

entries of matrix W

entries of matrix C

Figure 1: Optimal selection of an additional row given that k columns

and k − 1 rows are already selected. Note that the optimal choice requires

to use only entries of already selected columns.

2. A greedy algorithm for selection of rows and

columns

Let us first to introduce the notation we use through-

out the paper. Given a sequence of k row indices I =
[i1, i2, ..., ik] (or k column indices J = [ j1, j2, ..., jk]), we

denote the (m − k) row complement indices by I ((n − k)

column complement indices by J), i.e. the indices of rows

(columns) not selected. The column, row and intersection

matrices are then defined by C = Y(:,J), R = Y(I, :) and

W = Y(I,J) respectively. Accordingly, we also define

C = Y(I,J) and R = Y(I,J).

Our Greedy-CUR algorithm is inspired by the following

Theorem due by Goreinov, Zamarashkin and Tyrtyshnikov

(see proof on original paper [2]):

Theorem 1 (Goreinov, Zamarashkin and Tyrtyshnikov)

Let a square matrix Y ∈ R
n×n be nonsingular and a se-

lection of row and column indices I and J such that the

intersection submatrix W is non-degenerate. In this case,

the following CUR approximation bounds are obtained:

‖Y − CUR‖2 ≤ σk+1

√

1 + ‖CU‖2
2
, (1)

‖Y − CUR‖2 ≤ σk+1

√

1 + ‖UR‖2
2
, (2)

where σk+1 is the (k+1)-th singular value of Y and the core

matrix is defined by U =W−1.

This theorem shows us that we can control the approxima-

tion error based only on the entries of selected columns (or

rows) since bound (1) depends exclusively on them.

Let us consider a simple case of having already selected

k−1 rows and k columns and we want to optimally select an

additional row in order to complete a CUR decomposition

with k rows/columns. Theorem 1 gives us a clue on how

to select it without needing to test all entries of all possible

additional rows. In this case, we minimize the bound (1)

by testing all possible selections which requires to use only

the entries of the selected columns (see Figure 1).

The suggested algorithm requires to calculate the inverse

of the intersection matrix for all possible selections which

are not guaranteed to exist or can be bad conditioned so

we replace the inverse by the adapted Moore-Penrose pseu-

doinverse W
†
τ for a small τ (as implemented in MATLAB).

Note also that, when this pseudoinverse is used, we are al-

lowed to apply this algorithm even if the intersection matrix

is not square, that is, different number of rows and columns.

For a fast implementation of this algorithm we also use the

Frobenius norm (‖ · ‖F ) instead of spectral norm (‖ · ‖2).

This basic algorithm, called ADD ROW(C, I), is shown as

Algorithm 1.

Algorithm 1 ADD ROW algorithm

INPUT: Matrix C and indices of already selected rows I.

OUTPUT: Index of the best row to add i.

1: i = min
i<I
‖CC(I ∪ {i}, :)†‖2

F
;

2: return i

The idea of our Greedy-CUR algorithm is to start from

the selection of an arbitrary single column and successively

add single rows and single columns which are optimal at

each iteration step r = 1, 2, ..., k. It is interesting to note

that only in the first step (when only one column was pre-

viously selected), the Greedy-CUR algorithm is identical

to the 2D cross algorithm by selecting rows/columns cor-

responding to the maximum absolute value entry [4]. The

detailed Greedy-CUR algorithm is presented as Algorithm

2.

Algorithm 2 GREEDY CUR algorithm

INPUT: initial column index j1 and the number of rows/columns to be

selected k.

OUTPUT: Indexes of selected k rows/columns Ik and Jk .

1: J1 = { j1}, I0 = {∅};
2: r = 1;

3: while r < k do

4: if r , 1 then

5: Rr = Y(Ir , :);

6: Jr = Jr−1∪ ADD ROW(RT
r ,Jr−1);

7: end if

8: Cr = Y(:,Jr);

9: Ir = Ir−1∪ ADD ROW(Cr ,Ir−1);

10: r=r+1;

11: end while

12: return Ir and Jr ;

In Fig. 2 we illustrate a Monte Carlo analysis by ap-

plying our Greedy-CUR algorithm to synthetic date. We

generated a class of matrices as Y = V1ΛVT
2

where

V1,V2 ∈ R100×100 are randomly generated orthogonal ma-

trices and Λ ∈ R
100×100 is diagonal with its main diago-

nal elements (singular values) obeying the following de-

cay law σk = 1/k. From these results we conclude that:

a) Greedy-CUR achieves better quality of reconstruction

compared to the cross algorithm; b) bounds of equations

(1) and (2) are tight allowing us to effectively minimize the

approximation error, i.e. this allows us to decide when to

stop adding new rows/columns if a desired approximation

quality is achieved1; and c) Bounds based on the Maximum

1This requires to know in advance or make an assumption about the

decay law associated to singular values σk

- 448 -



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

Greedy CUR error

Cross algorithm error

Truncated SVD error (optimal)

Number of rows/columns r

0 5 10 15 20 25 30 35 40
10

-2

10
-1

10
0

10
1

Greedy CUR error
Columns based bound (equation (1))
Rows based bound (equation (2))
Max. Volume Bound M1 (Table 1)
Truncated SVD error (optimal)

Number of rows/columns r

Figure 2: Error of Greedy-CUR algorithm and related bounds (top), and

comparison of errors obtained with Greedy-CUR and a classical 2D-cross

algorithm [4] (bottom). Bound M2 is much larger than M1 and it is not

shown. We averaged the results over 100 realizations

Volume concept (see Table 1) are considerably higher than

obtained errors with Greedy-CUR suggesting that Maxi-

mum Volume property is not required in practice.

3. Extensions to tensors

In this section we are faced to the problem of obtain-

ing good approximations of tensors (multiway arrays [7])

based only on few entries of them. Let us first consider,

for a clear presentation, the simplest case of a 3D tensor

Y ∈ R
n×n×n where entries are denoted by yi jk and the in-

dices i, j, k take values in the range: 1, 2, ..., n. A procedure

that transforms a 3D tensor into a matrix is called unfold-

ing (or matricization) and consists on mapping a pair of

indices to a new index. As a result, a matrix with the same

elements as the original tensor is obtained. The three pos-

sible (modes) unfolded matrices (n×n2) are: Y(1) = [yi( jk)],

Y(2) = [y j(ik)], and Y(3) = [yk(i j)].

Then, we can approximate a tensor Y ∈ R
n×n×n by ap-

proximating any of its unfolded matrix versions, for ex-

ample Y(1), which can be done by applying Greedy-CUR

algorithm arriving to a selection of rows and columns of

Y(1). Furthermore, it is easy to see that any row of Y(1) cor-

responds to a vectorized version of a horizontal slice in the

original tensor Y which can be itself approximated by the

CUR decomposition (see Fig. 3).

Therefore, we can obtain an approximation of a 3D

tensor by applying Greedy-CUR to one unfolded matrix

and applying again Greedy-CUR to approximate selected

slices. In summary, this procedure requires to use only par-

tial information of the tensor, more specifically, it requires

j

i

k

Mode 1
Unfolding

(j,k)

i

Tensor ( ) Yn n n´ ´ Unfolded Matrix ( ) Y CUR(1) @n n´
2

k

j

Horizontal slice

H CURi i i i@

Vectorizing

Column fibers
Row fibers
Tube fibers
Horizontal slices
Intersection elements

Figure 3: Application of CUR approximation to mode 1 unfolded ma-

trix Y(1) � CUR and selected horizontal slices Hi = CiUiRi.

d=8
(i ,

)
1 i ,i ,i )

(i ,i ,i ,i
2 3 4

5 6 7 8

(i , )1 i ,i ,i i ,i ,i ,i2 3 4, 5 6 7 8

(i ,

)

1 i )

(i ,i )

(i ,i )

(i ,i

2

3 4

5 6

7 8

Figure 4: Example of recursive unfolding of a tensor with N = 8 di-

mensions. At every step of the recursion a matrix is obtained which can

be approximated by its CUR decomposition

to sequentially sample few rows, columns and tubes fibers

of a 3D tensor

We can easily extend this procedure to the case of

N−dimensional tensors, i.e. Y ∈ RI1×I2×...×IN by noting that

any tensor can be written as a matrix by just grouping its in-

dices in two sets. This generalizes the concept of unfolding

a 3D tensor to arrays of general dimensions N as recently

introduced in [8]. For example, if N is an even number,

we can decompose N indices as union of 2 groups of N/2

indices each and this procedure can be recursively repeated

until reach to the leaves of a hierarchical tree with only two

indices. In Fig. 4 an example of such recursive grouping of

indices for a tensor with N = 8 indices is shown.

Another way to reconstruct a tensor from the entries of

selected few fibers is given by the following theorem (re-

cently provided in [9]) which is based in the Tucker model

[10] where the n-mode product of a tensor by a matrix is

denoted by ×n:

Theorem 2 Given an N-way tensor Y ∈ R
I1×I2×...×IN hav-

ing an exact representation by the Tucker model of order R,

i.e. there exist a set of matrices An ∈ RIn×R, n = 1, 2, ...,N

and a core tensor G ∈ RR×R×...×R such that

Y = G ×1 A1 ×2 A2... ×N AN , (3)

and, given a selection of P indices for each dimension (P ≥
R) In, n = 1, 2, ...,N such that all the unfolding matrix

modes of the intersection subtensor W = Y(I1,I2, ...,IN)

have rank R. In this case, the following exact tensor repre-

sentation is obtained:

Y = U ×1 C1 ×2 C2... ×N CN , (4)

where matrices Cn ∈ R
In×P(N−1)

are matrices contained the

corresponding n-mode fibers, i.e. Cn = Y(n)(:,
⊗

p,n
Ip)

and the core tensor is U =W ×1 W
†
(1)
×2 W

†
(2)
... ×N W

†
(N)

.

- 449 -



Number of selected indices r

Average Error for 3D data tensors with = 1.5a

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

CUR based approximation error

FSTD approximation error

Tucker3 order r error

PARAFAC order r error

Figure 5: Error of approximation of 3D tensors (100 × 100 × 100) with

our CUR based method and FSTD method for a decay law σl = 1/lα with

α = 1.5. As a reference, the approximation errors obtained by applying

Tucker3 model order r and PARAFAC model with r components are also

shown. We averaged the results over 20 realizations.

Equation (4) provides the so called Fiber Based Tensor De-

composition (FBTD) or Fiber Sampling Tensor Decompo-

sition (FSTD) which gives an exact calculation of a tensor

based on a subset of intelligently selected n-mode fibers

and can be used as an approximation tool when the original

tensor is approximated by a Tucker model [9].

4. Numerical results analysis for tensors with N = 3

In Fig. 5 a Monte Carlo analysis of applying our CUR

based method and the FSTD algorithm to a class of 3D ten-

sors with n = 100 generated as Y =
∑n

l=1 σlul ◦ vl ◦ wl

where vectors ul, vl,wl are the columns of randomly gener-

ated orthogonal matrices U,V,W ∈ R
n×n, the operation ◦

is the outer product and the coefficients obey the following

decay law σl = 1/lα. We note that this data corresponds

to PARAFAC model with orthogonal vectors or Tucker3

model with orthogonal matrices and a diagonal core ten-

sor [11]. We also compare the obtained approximation

with those ones achieved by standard tensor decomposi-

tion methods like PARAFAC and Tucker3 which uses the

information of all the entries of the tensor (we have used

the MATLAB Tensor Toolbox [12]) for different values of

parameter α (decay law).

5. Conclusions and discussions

Greedy-CUR algorithm allows one to achieve better ap-

proximations (lower error) than cross algorithms. As a

drawback it can be shown that it runs in quadratic time

O(n2) in contrast with linear time (O(n)) of cross algorithms

[4]. It is also important to note that the complexity in-

creases more than linearly in k (number rows/columns to

be selected) and calculations can be expensive for large k.

In fact, the key factor for obtaining good CUR approxima-

tion is to have singular values with abrupt decay laws as

our experimental results showed. Our results also suggest

that Maximum Volume condition of the intersection ma-

trix W can be relaxed and special attention should be paid

to the matrices C and R in order to minimize the error as

our Greedy-CUR algorithm does. We have developed two

methods for for the approximation of N−dimensional ten-

sors which are based on the information contained only in

few fibers (for N = 3 it corresponds to few row, column and

tube fibers): the first method is a based on the CUR decom-

position of matrices applied to one unfolding mode and the

second method is based on the FSTD formula recently pro-

vided in [9]. This methods can be used as representation

models of large tensor (dataset) since they are able to re-

construct the whole dataset from the indices of the selected

fibers. This can result in enormous saving of memory when

singular values of associated matrices have sharp decays.

References

[1] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin,

“A theory of pseudoskeleton approximations,” Linear Alge-

bra and its Applications, vol. 261, pp. 1–21, 1997.

[2] ——, “Pseudo-skeleton approximations by matrices of

maximal volume,” Mathematical Notes, vol. 62, no. 4, pp.

515–519, 1997.

[3] S. A. Goreinov and E. E. Tyrtyshnikov, “The maximal-

volume concept in approximation by low-rank matrices,”

Contemporary Mathematics, vol. 280, pp. 47–51, 2001.

[4] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov,

“Tucker dimensionality reduction of three-dimensional ar-

rays in linear time,” SIAM Journal on Matrix Analysis and

Applications, vol. 30, no. 3, p. 939, 956 2008.

[5] G. W. Stewart, “Four algorithms for the the efficient compu-

tation of truncated pivoted QR approximations to a sparse

matrix,” Numerische Mathematik, vol. 83, no. 2, pp. 313–

323, 1999.

[6] M. W. Mahoney and P. Drineas, “CUR matrix decomposi-

tions for improved data analysis,” Proceedings of the Na-

tional Academy of Sciences, vol. 106, no. 3, pp. 697–702,

January 2009.

[7] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari, Non-

negative Matrix and Tensor Factorizations. Wiley, Septem-

ber 2009, in press.

[8] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse

od dimensionality, or how to use SVD in many dimensions,”

ICM HKBU, Report 09-03, 2009.

[9] C. F. Caiafa and A. Cichocki, “Generalizing the CUR matrix

decomposition to multi-ways arrays,” June 2009, submited.

[10] L. R. Tucker, “Implications of factor analysis of three-way

matrices for measurement of change,” in Problems in Mea-

suring Change, C. W. Harris, Ed. University of Wisconsin

Press, 1963, pp. 122–137.

[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and

applications,” 2009, to appear in SIAM Review (accepted

June 2008).

[12] B. W. Bader and T. G. Kolda, “Matlab tensor toolbox ver-

sion 2.2,” January 2007.

- 450 -


	Navigation page
	Session at a glance
	Technical program

