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Abstract—The stabilization of a novel fractional-
order chaotic financial systems involving market con-
fidence is concerned in this paper. Based on fractional
stability theory, we apply a state feedback controller to
stabilize such system to desirable equilibrium and the
equilibriums of the original system are kept complete-
ly. Finally, numerical examples are given to demon-
strate the correctness of the theoretical results.
Keywords: Chaotic system, Fractional-order finan-
cial system, State feedback, Stability, Stabilization.

1. Introduction

Researches have shown that fractional derivatives
provide an excellent tool for describing the memory
and hereditary properties of various materials and pro-
cesses. Recently, control of fractional-order financial
systems have fascinated many researchers [1, 2, 3]. In
[1], the sliding control law was achieved to stabilize the
fractional-order system by the sliding control strategy.
In [3], it is shown that an appropriate time delay can
enhance or suppress the emergence of chaotic or peri-
odic motions.

It is well known that the most important factor to
influencing or rescue the economic crisis is confidence,
the confidence of the people was very important [4, 5].
The author revealed that confidence is easy to lose
and hard to gain in [4]. It is shown that the economic
emerges, the people losing confidence would bring a
series of chain reaction and vicious cycle in [6], such
as stopping consuming, canceling investment, and re-
ducing producing, which will lead to less confidence,
less investment, less employment, more layoffs, more
stock of product, more deficit. Governments always
do their best to provide a balancing platform that fos-
ters savings and investments by adopt some strategies.
It is important to reduce or eliminate the chaos phe-
nomenon in fractional financial systems via stabiliza-
tion to improve the performance of economy, such as
preserving stability. Hence, it is meaningful to inves-

tigate the stabilization of fractional financial systems.

To our knowledge, the stabilizations of fractional-
order financial systems via state feedback are not ful-
ly studied. Motivated by this fact, in this paper, we
present a state feedback controller to stabilize chaos of
the financial system to the desirable equilibriums. The
study indicates the proposed method can effectively e-
liminate chaos and stabilize the financial market.

2. Preliminaries

In this section, we present the widely accepted
Caputo definition of fractional derivative. The main
theoretical tools for the qualitative analysis of frac-
tional dynamical systems are given in [8][9].

Definition 1.[7] The Caputo fractional deriva-
tive of order α of a continuous function f(t) with
respect to t is defined as follows

Dα
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
, (1)

where m is the first integer larger than α,
m− 1 ≤ α ≤ m, Γ(·) is the gamma function.

Definition 2.[9] Consider the equilibrium points
of fractional system

Dαxi(t) = fi(xi(t)), i = 1, 2, . . . , n, (2)

where xi(t) = (x1(t), x2(t), . . . , xn(t)), fi(t) =
(f1(t), f2(t), . . . , fn(t)).
The equilibrium solutions are defined by fi(x

∗
i ) =

0, therefore, we can get the equilibrium points
(x∗

1, x
∗
2, . . . , x

∗
n).
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3. Model description

In [6], the authors modelled a novel financial system
with market confidence, this model is described by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dαx1 = x3 + (x2 − a)x1 +m1x4,

Dαx2 = 1− bx2 − x2
1 +m2x4,

Dαx3 = −x1 − cx3 +m3x4,

Dαx4 = −x1x2x3,

(3)

where 0 < α ≤ 1, x1 stands for the interest rate,
x2 represents the investment demand, x3 denotes the
price index, x4 denotes the market confidence, a is the
saving amount, b is the cost per investment, c is the
demand elasticity of commercial market, a, b and c
are nonnegative. m1, m2 m3 are the impact factors,
the detailed account to the system (3) can be found
in [6]. When α = 0.95, a = 2.1, b = 0.01, c = 2.6,
m1 = 8.4, m2 = 6.4, m3 = 2.2, system (3) indicates
chaotic attractor in [6], which is depicted in Figure.1.
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Figure 1: The chaotic attractor of system (3).

Following the ideas developed in [10], in this paper,
we will design a linear state feedback controller to sta-
bilize the fractional-order system (3). The controlled
fractional-order chaotic system is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dαx1 = x3 + (x2 − a)x1 +m1x4 − k1(x1 − x∗
1),

Dαx2 = 1− bx2 − x2
1 +m2x4 − k2(x2 − x∗

2),

Dαx3 = −x1 − cx3 +m3x4 − k3(x3 − x∗
3),

Dαx4 = −x1x2x3 − k4(x4 − x∗
4),

(4)

where k1, k2 k3, k4 are feedback gain, (x∗
1, x

∗
2, x

∗
3, x

∗
4)

is a desirable equilibrium.

4. Main results

In this section, we will discuss the equilibriums of
the uncontrolled system (3) and consider the stabi-
lization of the controlled system (4). Obviously, the
controlled system (4) and the uncontrolled system (3)
have identical equilibriums.

To discuss conveniently the equilibrium of system
(3), the assumptions are given as follows.

(A1) b > 0.
(A2) cm1 +m3 = 0.

(A3) cm1 +m3 �= 0.
(A4) m1 = 0, m3 = 0.
(A5) m1 �= 0, m3 = 0.
(A6) m3 �= 0 and m2

2 − 4m3[m3(ab− 1)−m1b] ≥ 0.
In the following, we discuss the equilibriums of un-

controlled system (3). Considering the steady state of
uncontrolled system (3), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x3 + (x2 − a)x1 +m1x4 = 0,

1− bx2 − x2
1 +m2x4 = 0,

− x1 − cx3 +m3x4 = 0,

− x1x2x3 = 0.

(5)

To obtain the equilibrium of the system (3), it is
necessary to solve Eq.(5). From the last equation of
Eq.(5), it can be seen that several cases should be con-
sidered separately.

Assume that x1 = 0, then Eq.(5) becomes

⎧⎪⎨
⎪⎩

x3 +m1x4 = 0,

1− bx2 +m2x4 = 0,

− cx3 +m3x4 = 0.

(6)

According to Eq.(6), we easily derive that
(i) If b > 0 and cm1 +m3 �= 0, then x1 = 0, x2 = 1

b ,
x3 = 0, x4 = 0, then the system (3) has an equilibrium
(0, 1

b , 0, 0).
(ii) If b > 0 and cm1 + m3 = 0, then x1 = 0, x2 =
1+m2γ1

b , x3 = −m1γ1, x4 = γ1. Therefore, the system

(3) has an equilibrium (0, 1+m2γ1

b ,−m1γ1, γ1).
Similar to the above discussion, we can easily discuss

others cases: x2 = 0, x3 = 0, x1 = x2 = 0, x1 = x3 =
0, x3 = x3 = 0, x1 = x2 = x3 = 0. Due to page limit,
the discussions are omitted.

From the above analysis, we can conclude the
following results:

Theorem 1. Consider system (3), the following
results hold.
1) If (A1) and (A2) hold, then system (3) has an
equilibrium (0, 1+m2γ1

b ,−m1γ1, γ1).
2) If (A1) and (A3) hold, then system (3) has an
equilibrium (0, 1

b , 0, 0).
3) If (A2) holds, then system (3) has an equilibrium
(0, 0, m1

m2
,− 1

m2
).

4) If (A3) holds, then system (3) has an equi-

librium ( (cm1+m3)γ2

1+ac , 0, (am3−m1)γ2

1+ac , γ2), where

γ2 =
m2(1+ac)2±

√
m2

2(1+ac)4+4[(cm1+m3)(1+ac)]2

2(cm1+m3)2
.

5) If (A1) and (A4) hold, then system (3) has an
equilibrium (0, 1+m2γ3

b , 0, γ3).
6) If (A1) and (A5) hold, then system (3) has an
equilibrium (0, 1

b , 0, 0).
7) If (A1) and (A6) hold, then system (3) has an

equilibrium (m3γ4,
1−m3

3γ
2
4+m2γ4

b , 0, γ4),
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where γ4 =
m2±

√
m2

2−4m3[m3(ab−1)−m1b]

2m2
3

.

Remark 1: In Theorem 1, in general, the num-
ber of the equilibrium of the system (6) is different
for given parameter values a, b, c, m1, m2 and m3.

It is not difficult to see that characteristic equation
of the controlled system (4) at the equilibrium point
(x∗

1, x
∗
2, x

∗
3, x

∗
4) is

λ4 + P1λ
3 + P2λ

2 + P3λ+ P4 = 0, (7)

where

P1 =(k1 + k2 + k3 + k4) + a+ b+ c− x∗
2,

P2 =(k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4) + [a(k2

+ k3 + k4) + b(k1 + k3 + k4) + c(k1 + k2 + k4)]

− (k2 + k3 + k4 + b+ c)x∗
2 +m1x

∗
2x

∗
3 +m2x

∗
1x

∗
3

+m3x
∗
1x

∗
2 + 2(x∗

1)
2 + ab+ bc+ ac+ 1,

P3 =(k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4) + a(k2k3

+ k3k4 + k2k4) + b(k1k3 + k1k4 + k3k4) + c(k1k2

+ k1k4 + k2k4) + ab(k3 + k4) + bc(k1 + k4) + ac

· (k2 + k4) + k2 + k4 + (bm3 +m3k2 + am3 + am2

+m3k1 −m1)x
∗
1x

∗
2 + (cm2 +m2k3 +m2k1)x

∗
1x

∗
3

+ (cm1 +m1k3 + bm1 +m1k2 +m3)x
∗
2x

∗
3 − (k2k3

+ k2k4 + k3k4 + bk4 + ck4 + bk3 + ck2 + bc)x∗
2

+ 2(k3 + k4 + c)(x∗
1)

2 − 2m1(x
∗
1)

2 −m3x
∗
1(x

∗
2)

2 + b,

P4 =k1k2k3k4 + ak2k3k4 + bk1k3k4 + ck1k2k4 + abk3k4

+ bck1k4 + ack2k4 + k2k4 + (abc+ b)k4 + (−bm1

−m1k2 + abm3 + am3k2 + bm3k1 +m3k1k2)x
∗
1x

∗
2

+ (bm3 +m3k2 + bcm1 + bm1k3 + cm1k2 +m1m2

·m3)x
∗
2x

∗
3 +m2(1 + ac+ ak3 + ck1 + k1k3)x

∗
1x

∗
3

−m3(b+ k2)x
∗
1(x

∗
2)

2 − 2(cm1 +m3)(x
∗
1)

2x∗
3

−m2(x
∗
1)

2x∗
2 − 2(m1k3 − ck4 − k3k4)(x

∗
1)

2

+ 2m3(x
∗
1)

3x∗
2 − k4(bc+ bk3 + ck2 + k2k3)x

∗
2.

According to Theorem 1, we can obtain the follow-
ing Theorem 2 without difficulty.

Theorem 2. If a = 2.1, b = 0.01, c = 2.6,
m1 = 8.4, m2 = 6.4, m3 = 2.2, then the controlled
system has the following five equilibriums:

E∗
1 = (0, 100, 0, 0),

E∗
2 = (2.1788, 0,−0.3426, 0.5855),

E∗
3 = (−0.4589, 0, 0.0727,−0.1233),

E∗
4 = (3.2245,−1.7182, 0, 1.4657),

E∗
5 = (−0.3155,−1.7182, 0,−0.1434).

Applying the results in [10] and together with Theo-
rem 2 and (7), we can obtain the following Theorem.

Theorem 3. When a = 2.1, b = 0.01, c = 2.6,
m1 = 8.4, m2 = 6.4, m3 = 2.2, E∗

1 = (0, 100, 0, 0), the
controlled system (4) converges to the equilibrium E∗

1

if the feedback gain k1, k2, k3, k4 satisfy following
conditions:

P1 > 0, P1P2−P3 > 0, P1P2P3−P 2
3−P 2

1P4 > 0, P4 > 0.

Proof. Substituting a = 2.1, b = 0.01, c = 2.6,
m1 = 8.4, m2 = 6.4, m3 = 2.2 x∗

1 = 0, x∗
2 = 100 and

x∗
3 = 0 into Eq.(7), then we can obtain the coefficients

of Eq.(7). According to Routh-Hurwitz criterion of
fractional-order differential equation, from Eq.(7), we
obtain that

P1 > 0,

∣∣∣∣P1 1
P3 P2

∣∣∣∣ > 0,

∣∣∣∣∣∣
P1 1 0
P3 P2 P1

0 P4 P3

∣∣∣∣∣∣ > 0, P4 > 0.

Hence, P1 > 0, P1P2 −P3 > 0, P1P2P3 −P 2
3 −P 2

1P4 >
0, P4 > 0. The proof of Theorem 3 is completed.

Similarly, if the proper feedback gains k1, k2, k3, k4
are given, the controlled system (4) converges to the
desirable equilibriums E∗

2 , E∗
3 , E∗

4 , E∗
5 , respectively,

which are omitted here.

Remark 2. The obtained conditions of Theo-
rem 3 are merely sufficient conditions.

Remark 3. Comparing with [1, 6], the con-
trollers used in our paper are more convenient and
flexible, for each case, a variety of options can be
adopted to stabilize the controlled system (4) to the
desirable equilibrium.

5. Illustrative examples

To evaluate the effectiveness of proposed scheme,
simulation results are presented based on the fractional
predictor algorithm developed in [11].

The selected parameters all are taken from [6],
α = 0.95, a = 2.1, b = 0.01, c = 2.6, m1 = 8.4,
m2 = 6.4, m3 = 2.2. [6] displays that the un-
controlled system (4) is chaotic. Choosing the feed-
back gains (k1, k2, k3, k4) = (100, 6, 2, 4), which satis-
fies Theorem 3, from Eq.(7), we get (λ1, λ2, λ3, λ4) =
(−2.6,−4,−4.1,−6.01). Figure.2 displays that the e-
quilibrium E∗

1 = (0, 100, 0, 0) of the controlled system
(4) is asymptotically stable.

In addition, we may select other appropriate gain
parameters k1, k2, k3, k4, the controlled system (4)
converges to the desirable equilibriums E∗

2 , E∗
3 , E∗

4 ,
E∗

5 , respectively, which are demonstrated in Figure.3-
6.
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Figure 2: The trajectories of the controlled system (4)
converge to the equilibrium E∗

1 = (0, 100, 0, 0) when
α = 0.95, where k1 = 100, k2 = 6, k3 = 2, k4 = 4.

0 100 200 300 400 500
−2

−1

0

1

2

3

4

5

t

x 1(t), 
x 2(t), 

x 3(t), 
x 4(t)

x1(t)
x2(t)
x3(t)
x4(t)

Figure 3: The trajectories of the controlled
system (4) converge to the equilibrium E∗

2 =
(2.1788, 0,−0.3426, 0.5855) when α = 0.95, where
k1 = 1, k2 = 3, k3 = 2, k4 = 1.
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Figure 4: The trajectories of the controlled
system (4) converge to the equilibrium E∗

3 =
(−0.4589, 0,−0.0727,−0.1233) when α = 0.95, where
k1 = 2, k2 = 1, k3 = 2, k4 = 3.
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Figure 5: The trajectories of the controlled
system (4) converge to the equilibrium E∗

4 =
(3.2245,−1.7182, 0, 1.4657) when α = 0.95, where
k1 = 2, k2 = 2, k3 = 3, k4 = 4.
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Figure 6: The trajectories of the controlled
system (4) converge to the equilibrium E∗

5 =
(−0.3155,−1.7182, 0,−0.1434) when α = 0.95, where
k1 = 1, k2 = 1, k3 = 1, k4 = 1.

6. Conclusion

In this paper, we have proposed a state feedback
controller to stabilize fractional chaotic system to de-
sirable equilibrium, and the equilibriums of the origi-
nal system are kept completely. Analysis reveals that
our control technique is feasible to implement and the
obtained results are more simpler.
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