
  

 

A Perturbation-Based Algorithm with Extremely Long Periods of Generated 
Cycles 

 
Mieczyslaw Jessa  

 
Faculty of Electronics and Telecommunication, Poznan University of Technology 

ul. Polanka 3, 60-965 Poznan, Poland 
Email: mjessa@et.put.poznan.pl 

 
Abstract–A new algorithm for perturbing pseudo-

chaotic orbits, solving the problem of short cycles 
produced by chaotic systems realized in finite-state 
machines, is proposed. The algorithm does not require an 
external system to generate uniformly distributed pseudo-
random sequences. The periods of generated cycles are 
extremely long and independent of the precision of 
computations.  
 
1. Introduction 

 
The realization of chaotic maps in finite-state 

machines leads to serious degradation of chaotic dynamics. 
The properties of cycles observed in computers depend on 
the choice of the initial point, and their periods may be 
unexpectedly short [1, 2]. The problem of dynamical 
degradation has been addressed in many papers (e.g., [3] 
and references therein), and it is regarded as one of 
reasons for the weaknesses of many chaos-based 
cryptosystems realized in digital machines. Chaotic maps 
implemented in finite-state machines are known in the 
literature as pseudo-chaotic maps or digital chaotic maps. 
Up to now, three basic solutions to improve the properties 
of pseudo-chaotic maps have been proposed: using a 
higher finite precision [4, 5], cascading multiple chaotic 
systems [6] and using a perturbation-based algorithm [7-
11]. The first solution does not solve the problem at all, 
and cascading multiple chaotic systems increases the 
length of the cycle but complicates digital realization of a 
chaotic system. In a perturbation-based algorithm, 
however, a second system is used to perturb the orbits of a 
pseudo-chaotic map. The use of a perturbation as a 
method of improving digital chaos was independently 
proposed by Čermák [7] and Zhou and Ling [8]. It was 
later improved by Sang et al. [9-10] and adopted for 
pseudo-chaotic ciphers by Li [11].  

In a perturbation-based algorithm, cycles produced by 
a pseudo-chaotic map are perturbed every Δ iterations, 
where Δ is an integer. A perturbing sequence comes from 
another system that produces uniformly distributed 
pseudo-random sequences. The system can either be 
realized in the same machine or it can be physically 
independent of the machine used in computations. An 
alternative approach is to perturb a control parameter of a 
chaotic map, but this method seems to be less efficient [3]. 
The perturbation operation may either be the XOR 

function of the same groups of bits in a perturbed and 
pseudo-random sequence or it may be another masking 
function. The perturbation significantly increases the 
period of generated cycles. For example, it was shown in 
[9] that the minimum length mmin of generated sequences 
is 

min (2 1)pm = Δ − ,   (1) 
where p is the length of a linear feedback shift register 
(LFSR) that generates maximal length sequences. 
Although this method improves the pseudo-chaos 
observed in digital machines, it has disadvantages. For 
example, it requires an external system to generate 
uniformly distributed pseudo-random sequences. The 
dynamics of the perturbing system are known and are 
different from those of the pseudo-chaotic map, which is 
undesirable in cryptographic applications. In this paper, 
we propose a new method that eliminates both 
disadvantages. Generated cycles are perturbed with the 
use of the same pseudo-chaotic map, and the output 
sequences have extremely long periods, practically 
independent of the number l of bits used in computations. 
To change the period of the output cycle, we do not need 
to redesign the auxiliary generator; it is sufficient to 
change the size of an auxiliary table that is implemented 
in the same circuit as the pseudo-chaotic map.  

 
2. The Method 
 

Without losing generality, we consider a one-
dimensional chaotic map f, mapping unit interval 

[0,1)I ≡  into itself: 

1( ), 1,2,...n nx f x n−= =   (2) 
The perturbing signal (sequence) { }nz  is added to a 
pseudo-chaotic orbit every Δ iterations of f, i.e.,  

1 1( ), 1,2,...n n n

n n

x z f x n
y x

− −= ⊕ =⎧
⎨ =⎩

,  (3) 

where 0nz =  for ( 1)n k≠ + Δ  and 0nz ≠  for ( 1)n k= + Δ , 
and 0,1,...k = . The symbol ⊕  represents the perturbation 
operation, and yn is the output signal (perturbed orbit). The 
novelty of the paper lies in the method of generating { }nz  
and the analysis of the period of perturbed orbits. The 
numbers zn are produced with the use of the shuffling 
algorithm proposed by Bays and Durham for the 
multiplicative congruential pseudo-random generator [12, 
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13]. Using the method of Bays and Durham, we initially 
compute the L elements of sequence { }nx . These are 
written into successive cells of an auxiliary table T with 
size L. The value of the next iteration, i.e., 1( )L Lx f x −= , is 
the first number (u1) of the output stream. The same xL is 
used to compute the address t1 of a cell of T. The number 
read off from this cell is the second number (u2) of the 
output sequence. We generate the next number 

1 ( )L Lx f x+ =  and write it into T in the place of number u2. 
Next, we use u2 to compute the next address t2. The 
number read off from the cell with address t2 is the third 
number (u3) of the output stream. We compute 

2 1( )L Lx f x+ +=  and write it in place of u3, etc. [12, 13]. The 
addresses of the cells of table T are computed from the 
equation 

                       , 1,2,...N Nt L u N= ⋅ =⎡ ⎤⎢ ⎥ ,  (4) 
where it was assumed that [0,1)Nu ∈ . The period mu of 
{ }Nu  is [13] 

0.5( !)u xm O m L= ,   (5) 
where mx is the period of sequence { }nx . Period (5) is 
achieved for  

!xL m L<< << .   (6)  
If mx does not satisfy (6), the period of { }Nu  either does 
not change or increases slightly [12]. It should be noted 
that if shuffling sufficiently improves the properties of 
pseudo-chaotic orbits, we do not need to apply any 
perturbation algorithm at all. In other cases, the 
implementation of a perturbation is a better solution.  

The simplest method for perturbing the low-order bits 
of xn is the computation of the XOR function of these bits 
as well as the bits encoding symbols tN. Generally, such an 
operation is dangerous because the period of { }Nt  may be 
very short compared with the period of { }Nu . In this paper, 
we propose another approach that exploits all bits of some 
elements of sequence { }Nu , computed for ( 1)N k c= + Δ , 

0,1,...k = . Sequence { }Nu  is obtained from a perturbed 
sequence { }ny  shuffled in table T (Fig. 1).  

 
Fig. 1. Self-perturbing of sequence { }

n
x  

The constant c is computed as follows. We assume that all 
numbers are encoded by l bits jb− , 1,2,...,j l=  and that l 
has c divisors. For example, for 16l =  the divisors are 1, 
2, 4, 8, and 16. Denoting by d one of the divisors, we can 
divide the sequence of l bits into c=l/d disjoint blocks ,N iB  
( 1,2,...,i c= ) of bits with length d. Then,  

, 1 , 2 , ,1 ,2 ,0. ... 0. ... [0,1)N N N N l N N N cu b b b B B B I− − −= = ∈ ≡ ,    (7) 
where 

, , [ ( 1) 1] , [ ( 1) 2] ,{ ... }N i N d i N d i N idB b b b− − + − − + −= .  (8) 
If ( 1)N k c= + Δ , then we take Nu  to produce c digital 
words ,N iB . The words are next used in c successive 
perturbations. A pseudo-chaotic orbit is perturbed by 
means of signal  

1,1 mod

0 ( 1)
( 1)n

N k c

for n k
z B for n k− +

≠ + Δ⎧⎪= ⎨ = + Δ⎪⎩
,            (9) 

where 0,1 modk cB +  ( 0,1,...k = ) denotes 0,iB  ( 1,2,...,i c= ), 

which encodes 1u . After the perturbation, the number k is 
increased by unity and remains unchanged until the next 
perturbation. It plays the role of the perturbation counter. 

The analysis of the period of a perturbed sequence is 
very difficult, but we can find the lower bound of its value. 
This is sufficient for most applications, such as in 
cryptography. Let us assume that ym  is the period of { }ny  
and um  is the period of { }Nu . If 

!yL m L<< << ,   (10) 
then 

0.5( !)u ym O m L= ,   (11)  
where 

u ym m>> .   (12) 
The period ym  of a pseudo-chaotic sequence perturbed 
every Δ iterations of f is the least common multiple of 
period mp of a perturbing sequence { }nz  and Δ, 

( , )y pm LCM m= Δ ,  (13) 
If mp and Δ  are relatively prime, then ym  is the product 
of mp and Δ. In other cases, we can write that 

y pm m≥ ,   (14) 
where pm > Δ . In the proposed method, the perturbing 
signal is derived from the shuffled sequence { }Nu  with 
period um . The period mp of the perturbing sequence is 
cΔ  times shorter than um . Thus, from (14), we obtain that  

u
y

mm
c
⎢ ⎥≥ ⎢ ⎥Δ⎣ ⎦

.   (15)  

The results (12) and (15) are inconsistent. Consequently, 
the value of ym  increases with the increase in the number 
of iterations. Longer { }Nu  yields longer { }ny  and longer 
{ }ny  produces longer { }Nu  which, in turn, increases the 
length of { }ny  and so on. The process ends when ym  
stops to satisfy (10). The value of ym  becomes constant, 
and successive numbers begin to repeat with a constant 
period.  

The determination of the exact ym  that can be 
regarded as significantly smaller than !L  is practically 
impossible. In the technical sciences, it is usually assumed 
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that a number α is significantly smaller than a number β if 
/10α β≤ . An exception to this is in the field of 

metrology, in which the requirement is that /100α β≤ . 
From a practical point of view, it is safer to assume that 

ym  stops increasing when  

!
100y

Lm m ⎢ ⎥= ≥ ⎢ ⎥⎣ ⎦
.   (16) 

For large L this value is significantly greater than 
0.5( !)xO m L  assessed by Bays and Durham [12]. To obtain 

periods equal to or longer than !/100L , the period mx of 
an unperturbed pseudo-chaotic sequence has to satisfy 
condition (6). For example, if table T has 128 cells, we 
have the condition that 7 7162 128! 1 2xm<< << ≈ ⋅ . It is 
easy to satisfy the condition for the unperturbed orbits of 
pseudo-chaotic maps. 

Let us emphasize that formula (5) was obtained by 
Bays and Durham under the assumption that { }nx  is an 
approximation of independent and uniformly distributed 
random numbers from unit interval [0,1)I = . Therefore, 
the analysis of the period of perturbed sequence is valid 
for maps f that generate sequences satisfying the same 
assumption. If we apply the proposed self-perturbing 
method to a map that do not produce uniformly distributed 
numbers, the smallest period of sequence { }ny  may not 
satisfy inequality (16).  
 
3. Numerical Experiment 

 
In a finite-state machine with a l-bit digital word, a real 

number is approximated by a rational number. We can 
perform all computations either traditionally, i.e., with the 
use of floating-point arithmetic, or we can express the 
dynamic variables of (2) as / 2lp , where p N∈ , 
0 2lp< < .  

In the ANSI/IEEE double-precision floating-point 
arithmetic, where the fractional part of a real number 
requires 52 bits, we can divide the mantissa into 

52 /c d=  d-bit blocks. The number d is one of six 
divisors: 1, 2, 4, 13, 26, 52 of 52l = . Next, we perturb 
numbers { }nx  every Δ iterations of (2), according to the 
procedure described in Section 2. Another approach, 
which is faster and free from errors introduced by the 
floating-point arithmetic, exploits the transformation of f 
into the set of integer numbers. It was first proposed in 
paper [14]. Formula (2) takes the form 

1 2 ( / 2 ) , 0,1,...n n

l lp f p n+ = ⋅ =⎢ ⎥⎣ ⎦ .          (17) 
In the numerical experiment, we found the period of 
perturbed cycles produced by the Rényi chaotic map for 
six initial points. For the Rényi map 

( )1 mod 1, [0,1],n nx x x Rλ λ+ = ⋅ ∈ ∈ ,         (18) 

where λ  is a real number, we obtain 

( )1 mod 12 ( / 2 )n n

l lp pλ+ = ⋅ ⋅⎢ ⎥⎣ ⎦               (19) 
or equivalently 

1 mod( ) 2n n

lp pλ
+
= ⋅⎢ ⎥⎣ ⎦ .             (20) 

Because the observed periods can be extremely long, it 
was assumed in the numerical experiment that all numbers 
were encoded only by 16l =  bits and that the size L of 
table T was small but satisfied condition (6). Table 1 
shows the periods of unperturbed and perturbed orbits. 
The orbits were produced by a Rényi chaotic map with 
parameter λ equal to 2.8. Parameter Δ was equal to 500. 
During the perturbation, the XOR function between zn and 

8d =  low-order bits of pn was computed. Because the 
perturbation may lead to 0x =  and, consequently, to a 
sequence of zeros, the number 0x =  was always replaced 
by the number 2 lx −= . Table 1 also contains the smallest 
period computed from (16) (the numbers in parentheses, 
below the period found experimentally). 
Table 1. The period of unperturbed and perturbed pseudo-chaotic orbits 
as a function of initial point and the size L of table T 

 No 
pertur-
bation 

L=9 L=10 L=11 

16

0 1 / 2x =  715 
12073000 

(3628) 
26565000 
(36288) 

388116000 
(399168) 

16
0 10 / 2x =  715 12073000 

(3628) 
27004000 
(36288) 

388116000 
(399168) 

16
0

210 / 2x =  715 68000 
(3628) 

27004000 
(36288) 

388116000 
(399168) 

16
0

310 / 2x =  715 12073000 
(3628) 

25322000 
(36288) 

98864000 
(399168) 

16
0

410 / 2x =  715 68000 
(3628) 

27004000 
(36288) 

105575000 
(399168) 

16
0

46 10 / 2x = ⋅  715 12073000 
(3628) 

27004000 
(36288) 

115570000 
(399168) 

The period of unperturbed orbits was constant for all 
initial points considered in the experiment and equal to 
715. Consequently, condition (6) is satisfied for 9L ≥ . 
During iterations of f, the value of ym  increases with the 
increase in the number of iterations. The process ends 
when ym  ceases to satisfy (10). To experimentally find 
the final value of ym , we have to omit a large number of 
intermediate states. We first perform some number ns of 
initial iterations. For example, for 11L = , the effective 
searching of period 388116000 requires 9(10 )sn O=  
initial iterations. Number ns is greater than 

! 11! 39916800L = = . It seems that such a long intermediate 
state with irregular behavior of the perturbed pseudo-
chaotic orbit can be used in many applications instead of a 
fragment of the periodic sequence.  
 
4. Limitations of perturbation  
 

One of the limitations of perturbation is that 
perturbation may yield a sequence that terminates in a 
sequence of zeros or ones. As was shown in Section 3, this 
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can usually be eliminated without significant 
computational effort. A much more serious problem is the 
repetition of long fragments of cycles produced by f when 
f is implemented in the computer. If f produces many short 
orbits for different initial conditions, perturbation leads to 
orbit hopping. Because the orbits are short, we have to 
make perturbations frequently. If f produces long orbits, 
their number may be small. The probability then rapidly 
increases that a perturbation will repeat a long fragment of 
an unperturbed orbit. To overcome this serious 
disadvantage, we can, for example, combine signals 
produced by many independent pseudo-chaotic systems. 
In this paper, we propose to use the shuffling of Bays and 
Durham to perturbed sequence { }ny . This is simpler and 
requires less computational effort. If the perturbation 
yields a point that was previously generated and, 
consequently, a long part of a previously produced 
sequence repeats, additional shuffling changes the order of 
appearances of elements of this sequence. This is true if 
and only if during the perturbation table T’ does not 
contain the same numbers and in the same order as for the 
previous sequence. The number M of different contents of 
T’ can be computed from the equation 

( ) '
2

LlM = ,   (21) 
where l is the number of bits that encode numbers and L’ 
is the size of the additional table. If numbers written into 
T’ are equally probable, the probability P that T’ contains 
the same numbers and in the same order as for the 
previous sequence is equal to 1/M. For example, if ' 64L =  
and 16l = , we obtain 10242P −= . 

If L’ does not satisfy condition ' '!yL m L<< << , then 
the period of the sequence shuffled in T’ is comparable to 
the period of the perturbed sequence { }ny . Let us 
emphasize that additional shuffling does not introduce 
security to sequence { }ny  [15].  
 
5. Conclusions 

 
In this paper, a new algorithm to perturb pseudo-

chaotic orbits observed in finite-state machines has been 
proposed. In comparison with the existing algorithms, this 
algorithm does not require the perturbing signal to be 
generated by an external source. The period of the 
generated cycle depends on the size of the table used to 
shuffle a perturbed pseudo-chaotic orbit and may be a 
huge number, independent of the precision of 
computations. A method for preventing the repetition of 
long fragments of an unperturbed orbit observed in a 
perturbed signal has also been considered. The proposed 
algorithm can be used in applications requiring sequences 
with extremely long periods, e.g., in cryptography. 
Another application may be the generation of long-period, 
pseudo-random sequences in finite-state machines with a 
small number of states. The achievable periods can be 
significantly greater than periods obtained for the 
shuffling algorithm of Bays and Durham. The method is 

very fast and can be easily implemented in contemporary 
field programmable gate arrays. The subject of future 
research should be rigorous analysis of the period of 
sequence { }ny  for arbitrary map f. The fact that { }ny  and 
{ }Nu  depend on each other makes the analysis difficult.  
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